【真题汇编】2022年山东省济南市中考数学备考模拟练习 (B)卷(含答案及解析)
展开2022年山东省济南市中考数学备考模拟练习 (B)卷
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,DE是的中位线,若,则BC的长为( )
A.8 B.7 C.6 D.7.5
2、下列方程是一元二次方程的是( )
A.x2+3xy=3 B.x2+=3 C.x2+2x D.x2=3
3、某次知识竞赛共有20道题,规定每答对一题得10分,答错或不答都扣5分,小明得分要超过125分,他至少要答对多少道题?如果设小明答对x道题,根据题意可列不等式( )
A.10x﹣5(20﹣x)≥125 B.10x+5(20﹣x)≤125
C.10x+5(20﹣x)>125 D.10x﹣5(20﹣x)>125
4、如图,已知AD∥BC,欲用“边角边”证明△ABC≌△CDA,需补充条件( )
A.AB = CD B.∠B = ∠D C.AD = CB D.∠BAC = ∠DCA
5、如图,在平行四边形ABCD中,E是AD上一点,且DE=2AE,连接BE交AC于点F,已知S△AFE=1,则S△ABD的值是( )
A.9 B.10 C.12 D.14
6、下图中能体现∠1一定大于∠2的是( )
A. B.
C. D.
7、下列四个实数中,无理数是( )
A. B.0.131313… C. D.
8、下列利用等式的性质,错误的是( )
A.由,得到 B.由,得到
C.由,得到 D.由,得到
9、已知二次函数y=ax2+bx+c的部分图象如图,则关于x的一元二次方程ax2+bx+c=0的解为( )
A.x1=﹣4,x2=2 B.x1=﹣3,x2=﹣1
C.x1=﹣4,x2=﹣2 D.x1=﹣2,x2=2
10、将,2,,3按如图的方式排列,规定表示第m排左起第n个数,则与表示的两个数之积是( )
A. B.4 C. D.6
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,点O是的AB边上一点,,以OB长为半径作,与AC相切于点D.若,,则的半径长为______.
2、某水果基地为提高效益,对甲、乙、丙三种水果品种进行种植对比研究.去年甲、乙、丙三种水果的种植面积之比为5:3:2,甲、乙、丙三种水果的平均亩产量之比为6:3:5.今年重新规划三种水果的种植面积,三种水果的平均亩产量和总产量都有所变化.甲品种水果的平均亩产量在去年的基础上提高了50%,乙品种水果的平均亩产量在去年的基础上提高了20%,丙品种的平均亩产量不变.其中甲、乙两种品种水果的产量之比为3:1,乙、丙两种品种水果的产量之比为6:5,丙品种水果增加的产量占今年水果总产量的,则三种水果去年的种植总面积与今年的种植总面积之比为______.
3、如图,AB,CD是的直径,弦,所对的圆心角为40°,则的度数为______.
4、若∠α=55°25’,则∠α的补角为_______.
5、如图,在△ABC中,AB=12,BC=15,D为BC上一点,且BD=BC,在AB边上取一点E,使以B,D,E为顶点的三角形与△ABC相似,则BE=_____.
三、解答题(5小题,每小题10分,共计50分)
1、利用幂的运算性质计算:﹣×÷(结果用幂的形式表示).
2、解方程:(x+2)(x﹣3)=4x+8;
3、综合与实践
如图1,在综合实践课上,老师让学生用两个等腰直角三角形进行图形的旋转探究.在中,,,在中,,,点,分别在,边行,直角顶点重合在一起,将绕点逆时针旋转,设旋转角,其中.
(1)当点落在上时,如图2:
①请直接写出的度数为______(用含的式子表示);
②若,,求的长;
(2)如图3,连接,,并延长交于点,请判断与的位置关系,并加以证明;
(3)如图4,当与是两个相等钝角时,其他条件不变,即在与中,,,,,则的度数为______(用含或的式子表示).
4、计算:(3﹣2)×+(﹣)2.
5、先化简,再求值:,其中.
-参考答案-
一、单选题
1、A
【分析】
已知DE是的中位线,,根据中位线定理即可求得BC的长.
【详解】
是的中位线,,
,
故选:A.
【点睛】
此题主要考查三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半;掌握中位线定理是解题的关键.
2、D
【分析】
根据一元二次方程的定义逐个判断即可.只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.
【详解】
解:A.是二元二次方程,不是一元二次方程,故本选项不符合题意;
B.是分式方程,故本选项不符合题意;
C.不是方程,故本选项不符合题意;
D.是一元二次方程,故本选项符合题意;
故选:D.
【点睛】
本题考查了一元二次方程的定义,能熟记一元二次方程的定义是解此题的关键.
3、D
【分析】
根据规定每答对一题得10分,答错或不答都扣5分,可以列出相应的不等式,从而可以解答本题.
【详解】
解:由题意可得,
10x-5(20-x)>125,
故选:D.
【点睛】
本题考查由实际问题抽象出一元一次不等式,解答本题的关键是明确题意,列出相应的不等式.
4、C
【分析】
由平行线的性质可知,再由AC为公共边,即要想利用“边角边”证明△ABC≌△CDA,可添加AD=CB即可.
【详解】
∵AD∥BC,
∴.
∵AC为公共边,
∴只需AD=CB,即可利用“边角边”证明△ABC≌△CDA.
故选:C.
【点睛】
本题考查平行线的性质,三角形全等的判定.理解“边角边”即为两边及其夹角是解答本题的关键.
5、C
【分析】
过点F作MN⊥AD于点M,交BC于点N,证明△AFE∽△CFB,可证得,得MN=4MF,再根据三角形面积公式可得结论.
【详解】
解:过点F作MN⊥AD于点M,交BC于点N,连接BD,
∵四边形ABCD是平行四边形,
∴AD//BC,AD=BC
∴△AFE∽△CFB
∴
∵DE=2AE
∴AD=3AE=BC
∴
∴,即
又
∴
∴
故选:C
【点睛】
本题主要考查了平行四边形的性质,相似三角形的判定与性质,解答此题的关键是能求出两三角形的高的数量关系.
6、C
【分析】
由对顶角的性质可判断A,由平行线的性质可判断B,由三角形的外角的性质可判断C,由直角三角形中同角的余角相等可判断D,从而可得答案.
【详解】
解:A、∠1和∠2是对顶角,∠1=∠2.故此选项不符合题意;
B、如图,
若两线平行,则∠3=∠2,则
若两线不平行,则大小关系不确定,所以∠1不一定大于∠2.故此选项不符合题意;
C、∠1是三角形的外角,所以∠1>∠2,故此选项符合题意;
D、根据同角的余角相等,可得∠1=∠2,故此选项不符合题意.
故选:C.
【点睛】
本题考查的是对顶角的性质,平行线的性质,直角三角形中两锐角互余,三角形的外角的性质,同角的余角相等,掌握几何基本图形,基本图形的性质是解本题的关键.
7、D
【分析】
无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称,即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.无理数包括无线不循环小数和开方不能开尽的数,由此即可判定选择项.
【详解】
解:A.,是整数,属于有理数,故本选项不合题意;
B.0.131313…是无限循环小数,属于有理数,故本选项不合题意;
C.是分数,属于有理数,故本选项不合题意;
D.是无理数,故本选项符合题意;
故选:D.
【点睛】
题目主要考查立方根,无理数,有理数,理解无理数的定义是解题关键.
8、B
【分析】
根据等式的性质逐项分析即可.
【详解】
A.由,两边都加1,得到,正确;
B.由,当c≠0时,两边除以c,得到,故不正确;
C.由,两边乘以c,得到,正确;
D.由,两边乘以2,得到,正确;
故选B.
【点睛】
本题考查了等式的基本性质,正确掌握等式的性质是解题的关键.等式的基本性质1是等式的两边都加上(或减去)同一个整式,所得的结果仍是等式;等式的基本性质2是等式的两边都乘以(或除以)同一个数(除数不能为0),所得的结果仍是等式.
9、A
【分析】
关于x的一元二次方程ax2+bx+c=0(a≠0)的根即为二次函数y=ax2+bx+c(a≠0)的图象与x轴的交点的横坐标.
【详解】
解:根据图象知,抛物线y=ax2+bx+c(a≠0)与x轴的一个交点是(2,0),对称轴是直线x=−1.
设该抛物线与x轴的另一个交点是(x,0).
则,
解得,x=-4 ,
即该抛物线与x轴的另一个交点是(-4,0).
所以关于x的一元二次方程ax2+bx+c=0(a≠0)的根为x1=−4,x2=2.
故选:A.
【点睛】
本题考查了抛物线与x轴的交点.解题时,注意抛物线y=ax2+bx+c(a≠0)与关于x的一元二次方程ax2+bx+c=0(a≠0)间的转换.
10、A
【分析】
根据数的排列方法可知,第一排1个数,第二排2个数,第三排3个数,第四排4个数,…第(m-1)排有(m-1)个数,从第一排到(m-1)排共有:1+2+3+4+…+(m-1)个数,根据数的排列方法,每四个数一个循环,根据题目意思找出第m排第m个数后再计算
【详解】
解:(5,4)表示第5排从左向右第4个数,由图可知,(5,4)所表示的数是2;是第21排第7个数,则前20排有个数,则是第个数,
,2,,3四个数循环出现,
表示的数是
与表示的两个数之积是
故选A
【点睛】
本题考查了数字的变化规律,判断出所求的数是第几个数是解决本题的难点;得到相应的变化规律是解决本题的关键.
二、填空题
1、##
【分析】
在Rt△ABC中,利用正弦函数求得AB的长,再在Rt△AOD中,利用正弦函数得到关于r的方程,求解即可.
【详解】
解:在Rt△ABC中,BC=4,sinA=,
∴=,即=,
∴AB=5,
连接OD,
∵AC是⊙O的切线,
∴OD⊥AC,
设⊙O的半径为r,则OD= OB=r,
∴AO=5- r,
在Rt△AOD中,sinA=,
∴=,即=,
∴r=.
经检验r=是方程的解,
∴⊙O的半径长为.
故答案为:.
【点睛】
本题考查了切线的性质,正弦函数,解题的关键是掌握切线的性质、解直角三角形等知识点.
2、##
【分析】
设去年甲、乙、丙三种水果的种植面积分别为: 设去年甲、乙、丙三种水果的平均亩产量分别为: 设今年的种植面积分别为: 再根据题中相等关系列方程:①,②,求解: 再利用丙品种水果增加的产量占今年水果总产量的,列方程 求解 从而可得答案.
【详解】
解: 去年甲、乙、丙三种水果的种植面积之比为5:3:2,
设去年甲、乙、丙三种水果的种植面积分别为:
去年甲、乙、丙三种水果的平均亩产量之比为6:3:5,
设去年甲、乙、丙三种水果的平均亩产量分别为:
则今年甲品种水果的平均亩产量为:
乙品种水果的平均亩产量为: 丙品种的平均亩产量为
设今年的种植面积分别为:
甲、乙两种品种水果的产量之比为3:1,乙、丙两种品种水果的产量之比为6:5,
①,②,
解得:
又丙品种水果增加的产量占今年水果总产量的,
解得:
所以三种水果去年的种植总面积与今年的种植总面积之比为:
故答案为:
【点睛】
本题考查的是三元一次方程组的应用,设出合适的未知数与参数,确定相等关系,建立方程组,寻求未知量之间的关系是解本题的关键.
3、70°
【分析】
连接OE,由弧CE的所对的圆心角度数为40°,得到∠COE=40°,根据等腰三角形的性质和三角形的内角和定理可求出∠OCE,根据平行线的性质即可得到∠AOC的度数.
【详解】
解:连接OE,如图,
∵弧CE所对的圆心角度数为40°,
∴∠COE=40°,
∵OC=OE,
∴∠OCE=∠OEC,
∴∠OCE=(180°-40°)÷2=70°,
∵CE//AB,
∴∠AOC=∠OCE=70°,
故答案为:70°.
【点睛】
本题主要考查了等腰三角形的性质,三角形内角和定理,弧与圆心角的关系,平行线的性质,求出∠COE=40°是解题的关键.
4、
【分析】
根据补角的定义计算.
【详解】
解:∠α的补角为,
故答案为:.
【点睛】
此题考查了补角的定义:和为180度的两个角互为补角,熟记定义是解题的关键.
5、4或
【分析】
以B,D,E为顶点的三角形与△ABC相似,则存在两种情况,即△BDE∽△BCA,也可能是△BDE∽△BAC,应分类讨论,求解.
【详解】
解:如图,DE//BC
①当∠AED=∠C时,即DE∥AC
则△BDE∽△BCA,
∴
∵BD=BC,
∴
∴
②当∠BED=∠C时,△BED∽△BCA
∴,即
∴
综上,BE=4或
故答案为4或
【点睛】
此题考查了相似三角形的性质,会利用相似三角形求解一些简单的计算问题.
三、解答题
1、
【分析】
直接利用分指数幂的以及同底数幂的乘法和同底数幂的除法运算法则分别化简得出答案.
【详解】
解:,
,
,
,
.
【点睛】
题目主要考查分数指数幂的运算及同底数幂的乘法和同底数幂的除法,熟练掌握各运算法则是解题关键.
2、x1=7,x2=-2
【分析】
方程整理为一般形式,利用公式法求出解即可.
【详解】
解:方程整理得:x2-5x-14=0,
则a=1,b=-5,c=-14,
∵b2-4ac=25+56=81>0,
∴x=,
解得:x1=7,x2=-2.
【点睛】
此题考查了解一元二次方程-公式法,熟练掌握求根公式是解本题的关键.
3、(1)①;②;(2),证明见解析;(3)
【分析】
(1)①由等腰直角三角形得,,故可求出;
②过点M作于点,设,则,由,得是等腰直角三角形,得出,即可求出x的值,由勾股定理即可得出答案;
(2)设与相交于点,由旋转得,根据SAS证明,由全等三角形的性质得,由得即,故可证;
(3)设与相交于点,同(2)得,故,即可求.
【详解】
(1)①∵,都是等腰直角三角形,
∴,,
∵,
∴,
∴;
②
如图2,作于点,
设,
∵,,
∴,
∴,
∴,
在中,,
∵,
∴,
∴,
∴,
∴,,
∴;
(2),证明如下:
如图3,设与相交于点,
由旋转可知:,
∵,,
∴,
∴,
∵,
∴即,
∴,
∴;
(3)如图4,
设与相交于点,同(2)得,
∴,
.
【点睛】
本题考查等腰三角形的判定与性质,全等三角形的判定与性质,掌握相关知识点间的应用是解题的关键.
4、﹣1
【分析】
首先计算二次根式的乘法,利用完全平方公式计算,最后合并同类二次根式.
【详解】
解:原式=3﹣6+(2+3﹣2),
=3﹣6+5﹣2,
=﹣1.
【点睛】
本题主要考查了二次根式的乘法,完全平方公式,合并同类项,熟练运算法则和完全平方公式是解决本题的关键.
5、,-1.
【分析】
先根据分式的混合运算顺序和运算法则化简原式,再将a的值代入计算即可.
【详解】
解:原式=,
当时,原式=.
【点睛】
本题考查了分式的化简与求值,能正确根据分式的运算法则进行化简是解此题的关键,注意运算顺序.
【真题汇编】2022年云南省昆明市中考数学备考模拟练习 (B)卷(含答案解析): 这是一份【真题汇编】2022年云南省昆明市中考数学备考模拟练习 (B)卷(含答案解析),共29页。试卷主要包含了下列命题错误的是,下列说法中错误的是等内容,欢迎下载使用。
【真题汇编】2022年山东省济南市中考数学模拟测评 卷(Ⅰ)(含答案及解析): 这是一份【真题汇编】2022年山东省济南市中考数学模拟测评 卷(Ⅰ)(含答案及解析),共22页。试卷主要包含了下列利用等式的性质,错误的是,有依次排列的3个数等内容,欢迎下载使用。
【真题汇编】2022年山东省济南市中考数学备考真题模拟测评 卷(Ⅰ)(含答案及解析): 这是一份【真题汇编】2022年山东省济南市中考数学备考真题模拟测评 卷(Ⅰ)(含答案及解析),共19页。试卷主要包含了已知点A,已知,,且,则的值为,多项式去括号,得,下列利用等式的性质,错误的是等内容,欢迎下载使用。