【真题汇编】2022年吉林省长春市中考数学考前摸底测评 卷(Ⅱ)(含答案详解)
展开2022年吉林省长春市中考数学考前摸底测评 卷(Ⅱ)
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、若关于x的一元二次方程ax2﹣4x+2=0有两个实数根,则a的取值范围是( )
A.a≤2 B.a≤2且a≠0 C.a<2 D.a<2且a≠0
2、观察下列图形:它们都是由同样大小的圆圈按一定的规律组成,其中第1个图形有5个圆圈,第2个图形有9个圆圈,第3个图形有13个圆圈,……,按此规律,第7个图形中圆圈的个数为( )
A.21 B.25 C.28 D.29
3、已知和是同类项,那么的值是( )
A.3 B.4 C.5 D.6
4、如图,在矩形ABCD中,AB=2,BC=4,对角线AC,BD相交于点O,OE⊥AC交BC于点E,EF⊥BD于点F,则OE+EF的值为( )
A. B.2 C. D.2
5、菱形ABCD的周长是8cm,∠ABC=60°,那么这个菱形的对角线BD的长是( )
A.cm B.2cm C.1cm D.2cm
6、如图,在矩形ABCD中,点E在CD边上,连接AE,将沿AE翻折,使点D落在BC边的点F处,连接AF,在AF上取点O,以O为圆心,线段OF的长为半径作⊙O,⊙O与AB,AE分别相切于点G,H,连接FG,GH.则下列结论错误的是( )
A. B.四边形EFGH是菱形
C. D.
7、下列说法正确的是( )
A.无限小数都是无理数
B.无理数都是无限小数
C.有理数只是有限小数
D.实数可以分为正实数和负实数
8、下列说法中错误的是( )
A.若,则 B.若,则
C.若,则 D.若,则
9、已知点A(x,5)在第二象限,则点B(﹣x,﹣5)在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
10、若单项式与是同类项,则的值是( )
A.6 B.8 C.9 D.12
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、在一个暗箱里放有x个大小相同、质地均匀的白球,为了估计白球的个数,再放入5个和白球大小、质地均相同,只有颜色不同的黄球,将球搅拌均匀,从中随机摸出一个球,记下它的颜色后再放回暗箱中,通过大量重复试验,发现摸到黄球的频率稳定在0.2,推算x的值大约是______.
2、如图,中,,,,将绕原点O顺时针旋转90°,则旋转后点A的对应点的坐标是____________.
3、某水果基地为提高效益,对甲、乙、丙三种水果品种进行种植对比研究.去年甲、乙、丙三种水果的种植面积之比为5:3:2,甲、乙、丙三种水果的平均亩产量之比为6:3:5.今年重新规划三种水果的种植面积,三种水果的平均亩产量和总产量都有所变化.甲品种水果的平均亩产量在去年的基础上提高了50%,乙品种水果的平均亩产量在去年的基础上提高了20%,丙品种的平均亩产量不变.其中甲、乙两种品种水果的产量之比为3:1,乙、丙两种品种水果的产量之比为6:5,丙品种水果增加的产量占今年水果总产量的,则三种水果去年的种植总面积与今年的种植总面积之比为______.
4、将0.094932用四舍五入法取近似值精确到百分位,其结果是______.
5、近似数0.0320有_____个有效数字.
三、解答题(5小题,每小题10分,共计50分)
1、(1)解方程:
(2)我国古代数学专著《九章算术》中记载:“今有宛田,下周三十步,径十六步,问为田几何?”注释:宛田是指扇形形状的田,下周是指弧长,径是指扇形所在圆的直径.求这口宛田的面积.
2、 “119”全国消防日,某校为强化学生的消防安全意识,组织了“关注消防,珍爱家园”知识竞赛,满分为100分.现从八、九两个年级各随机抽取10名学生组成八年级代表队和九年级代表队,成绩如下(单位:分):
八年级代表队:80,90,90,100,80,90,100,90,100,80;
九年级代表队:90,80,90,90,100,70,100,90,90,100.
(1)填表:
代表队 | 平均数 | 中位数 | 方差 |
八年级代表队 | 90 |
| 60 |
九年级代表队 |
| 90 |
|
(2)结合(1)中数据,分析哪个代表队的学生竞赛成绩更好?请说明理由;
(3)学校想给满分的学生颁发奖状,如果该校九年级一共有600名学生且全部参加了知识竞赛,那么九年级大约有多少名学生可以获得奖状?
3、某商店销售一种商品,经市场调查发现:在实际销售中,售价x为整数,且该商品的月销售量y(件)是售价x(元/件)的一次函数,其售价x(元/件)、月销售量y(件)、月销售利润w(元)的部分对应值如表:
售价x(元/件) | 40 | 45 |
月销售量y(件) | 300 | 250 |
月销售利润w(元) | 3000 | 3750 |
注:月销售利润=月销售量×(售价-进价)
(1)求y关于x的函数表达式;
(2)当该商品的售价是多少元时,月销售利润最大?并求出最大利润;
(3)现公司决定每销售1件商品就捐赠m元利润()给“精准扶贫”对象,要求:在售价不超过52元时,每天扣除捐赠后的日销售利润随售价x的增大而增大,求m的取值范围.
4、本学期学习了轴对称、轴对称图形如角、等腰三角形、正方形、圆等图形;在代数中如,,,…任意交换两个字母的位置,式子的值都不变,这样的式子我们称为对称式.含有两个字母a,b的对称式的基本对称式是和,像,等对称式都可以用和表示,例如:.请根据上述材料解决下列问题:
(1)式子①,②,③,④.中,属于对称式的是 (填序号).
(2)已知.
①m= ,n= (用含a,b的代数式表示);
②若,,求对称式的值;
③若,请求出对称式的最小值.
5、如图,在离铁塔20m的A处,用测倾仪测得塔顶的仰角为53°,测倾仪高AD为1.52m.求铁塔高BC(参考数据sin53°≈0.80,cos53°≈0.60,tan53°≈1.33).
-参考答案-
一、单选题
1、B
【分析】
根据方程有两个实数根,可得根的判别式的值不小于0,由此可得关于a的不等式,解不等式再结合一元二次方程的定义即可得答案
【详解】
解:根据题意得a≠0且Δ=(−4)2−4•a•2≥0,
解得a≤2且a≠0.
故选:B.
【点睛】
本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2−4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.
2、D
【分析】
根据已知图形得出第n个图形中圆圈数量为1+4×n=4n+1,再将n=7代入即可得.
【详解】
解:∵第1个图形中圆圈数量5=1+4×1,
第2个图形中圆圈数量9=1+4×2,
第3个图形中圆圈数量13=1+4×3,
……
∴第n个图形中圆圈数量为1+4×n=4n+1,
当n=7时,圆圈的数量为29,
故选:D.
【点睛】
本题考查规律型-图形变化类问题,解题的关键是学会从特殊到一般的探究方法,学会利用规律解决问题.
3、C
【分析】
把字母相同且相同字母的指数也分别相同的几个项叫做同类项,根据同类项的定义即可解决.
【详解】
由题意知:n=2,m=3,则m+n=3+2=5
故选:C
【点睛】
本题主要考查了同类项的概念,掌握同类项的概念是解答本题的关键.
4、A
【分析】
依据矩形的性质即可得到的面积为2,再根据,即可得到的值.
【详解】
解:,,
矩形的面积为8,,
,
对角线,交于点,
的面积为2,
,,
,即,
,
,
,
故选:A.
【点睛】
本题主要考查了矩形的性质,解题的关键是掌握矩形的四个角都是直角,矩形的对角线相等且互相平分.
5、B
【分析】
由菱形的性质得AB=BC=2(cm),OA=OC,OB=OD,AC⊥BD,再证△ABC是等边三角形,得AC=AB=2(cm),则OA=1(cm),然后由勾股定理求出OB=(cm),即可求解.
【详解】
解:∵菱形ABCD的周长为8cm,
∴AB=BC=2(cm),OA=OC,OB=OD,AC⊥BD,
∵∠ABC=60°,
∴△ABC是等边三角形,
∴AC=AB=2cm,
∴OA=1(cm),
在Rt△AOB中,由勾股定理得:OB===(cm),
∴BD=2OB=2(cm),
故选:B.
【点睛】
此题考查了菱形的性质,勾股定理,等边三角形的性质和判定,解题的关键是熟练掌握菱形的性质,勾股定理,等边三角形的性质和判定方法.
6、C
【分析】
由折叠可得∠DAE=∠FAE,∠D=∠AFE=90°,EF=ED,再根据切线长定理得到AG=AH,∠GAF=∠HAF,进而求出∠GAF=∠HAF=∠DAE=30°,据此对A作出判断;接下来延长EF与AB交于点N,得到EF是⊙O的切线,ANE是等边三角形,证明四边形EFGH是平行四边形,再结合HE=EF可对B作出判断;在RtEFC中,∠C=90°,∠FEC=60°,则EF=2CE,再结合AD=DE对C作出判断;由AG=AH,∠GAF=∠HAF,得出GH⊥AO,不难判断D.
【详解】
解:由折叠可得∠DAE=∠FAE,∠D=∠AFE=90°,EF=ED.
∵AB和AE都是⊙O的切线,点G、H分别是切点,
∴AG=AH,∠GAF=∠HAF,
∴∠GAF=∠HAF=∠DAE=30°,
∴∠BAE=2∠DAE,故A正确,不符合题意;
延长EF与AB交于点N,如图:
∵OF⊥EF,OF是⊙O的半径,
∴EF是⊙O的切线,
∴HE=EF,NF=NG,
∴△ANE是等边三角形,
∴FG//HE,FG=HE,∠AEF=60°,
∴四边形EFGH是平行四边形,∠FEC=60°,
又∵HE=EF,
∴四边形EFGH是菱形,故B正确,不符合题意;
∵AG=AH,∠GAF=∠HAF,
∴GH⊥AO,故D正确,不符合题意;
在Rt△EFC中,∠C=90°,∠FEC=60°,
∴∠EFC=30°,
∴EF=2CE,
∴DE=2CE.
∵在Rt△ADE中,∠AED=60°,
∴AD=DE,
∴AD=2CE,故C错误,符合题意.
故选C.
【点睛】
本题是一道几何综合题,考查了切线长定理及推论,切线的判定,菱形的定义,含30的直角三角形的性质,等边三角形的判定和性质,翻折变换等,正确理解翻折变换及添加辅助线是解决本题的关键.
7、B
【分析】
根据定义进行判断即可.
【详解】
解:A中无限小数都不一定是无理数,其中无限循环小数为有理数,故本选项错误.
B中根据无理数的定义,无理数都是无限小数,故本选项正确.
C中有理数不只是有限小数,例如无限循环小数,故本选项错误;
D中实数可以分为正实数和负实数和0,故本选项错误;
故选:B.
【点睛】
本题考查了有理数,无理数,实数的定义.解题的关键在于正确区分各名词的含义.
8、C
【分析】
根据不等式的性质进行分析判断.
【详解】
解:A、若,则,故选项正确,不合题意;
B、若,则,故选项正确,不合题意;
C、若,若c=0,则,故选项错误,符合题意;
D、若,则,故选项正确,不合题意;
故选C.
【点睛】
本题考查了不等式的性质.解题的关键是掌握不等式的性质:①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.
9、D
【分析】
由题意直接根据各象限内点坐标特征进行分析即可得出答案.
【详解】
∵点A(x,5)在第二象限,
∴x<0,
∴﹣x>0,
∴点B(﹣x,﹣5)在四象限.
故选:D.
【点睛】
本题考查各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
10、C
【分析】
根据同类项的定义可得,代入即可求出mn的值.
【详解】
解:∵与是同类项,
∴,
解得:m=3,
∴.
故选:C.
【点睛】
此题考查了同类项的定义,解题的关键是熟练掌握同类项的定义.同类项:如果两个单项式,他们所含的字母相同,并且相同字母的指数也相同,那么就称这两个单项式为同类项.
二、填空题
1、20
【分析】
根据摸到黄球的频率稳定在0.2列式求解即可.
【详解】
解:由题意得
,
解得x=20,
经检验x=20符合题意,
故答案为:20.
【点睛】
本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.
2、
【分析】
如图(见解析),过点作轴于点,点作轴于点,设,从而可得,先利用勾股定理可得,从而可得,再根据旋转的性质可得,然后根据三角形全等的判定定理证出,最后根据全等三角形的性质可得,由此即可得出答案.
【详解】
解:如图,过点作轴于点,点作轴于点,
设,则,
在中,,
在中,,
,
解得,
,
由旋转的性质得:,
,
,
,
在和中,,
,
,
,
故答案为:.
【点睛】
本题考查了勾股定理、旋转、点坐标等知识点,画出图形,通过作辅助线,正确找出两个全等三角形是解题关键.
3、##
【分析】
设去年甲、乙、丙三种水果的种植面积分别为: 设去年甲、乙、丙三种水果的平均亩产量分别为: 设今年的种植面积分别为: 再根据题中相等关系列方程:①,②,求解: 再利用丙品种水果增加的产量占今年水果总产量的,列方程 求解 从而可得答案.
【详解】
解: 去年甲、乙、丙三种水果的种植面积之比为5:3:2,
设去年甲、乙、丙三种水果的种植面积分别为:
去年甲、乙、丙三种水果的平均亩产量之比为6:3:5,
设去年甲、乙、丙三种水果的平均亩产量分别为:
则今年甲品种水果的平均亩产量为:
乙品种水果的平均亩产量为: 丙品种的平均亩产量为
设今年的种植面积分别为:
甲、乙两种品种水果的产量之比为3:1,乙、丙两种品种水果的产量之比为6:5,
①,②,
解得:
又丙品种水果增加的产量占今年水果总产量的,
解得:
所以三种水果去年的种植总面积与今年的种植总面积之比为:
故答案为:
【点睛】
本题考查的是三元一次方程组的应用,设出合适的未知数与参数,确定相等关系,建立方程组,寻求未知量之间的关系是解本题的关键.
4、0.09
【分析】
把千分位上的数字4进行四舍五入即可.
【详解】
解:将0.094932用四舍五入法取近似值精确到百分位,其结果是0.09.
故答案为:0.09.
【点睛】
本题考查了近似数和有效数字,解题的关键是掌握近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.
5、3
【分析】
从左边第一个不是零的数字起,到末位数字为止的数的所有数字,都叫做这个数的有效数字,进而得到答案.
【详解】
解:近似数0.0320有3、2、0等3个有效数字
故答案为:3.
【点睛】
本题考查了近似数的有效数字.解题的关键在于明确:从左边第一个不是零的数字起,到末位数字为止的数的所有数字,都叫做这个数的有效数字.
三、解答题
1、(1),;(2)平方步
【分析】
(1)利用配方法,即可求解;
(2)利用扇形的面积公式,即可求解.
【详解】
解:(1),,
配方,得,
∴,
∴,;
(2)解:∵扇形的田,弧长30步,其所在圆的直径是16步,
∴这块田的面积(平方步).
【点睛】
本题主要考查了解一元二次方程,求扇形的面积,熟练掌握一元二次方程的解法,扇形的面积等于 乘以弧长再乘以扇形的半径是解题的关键.
2、
(1)90,90,80
(2)八年级代表队的学生竞赛成绩更好.因为两队平均数与中位数都相同,而八年级代表队的方差小,成绩更稳定
(3)180名
【分析】
(1)根据中位数的定义,平均数,方差的公式进行计算即可;
(2)根据平均数相等时,方差的意义进行分析即可;
(3)600乘以满分的人数所占的比例即可.
(1)
解:∵八年级代表队:80,80,80,90,90,90,90,100,100,100;
∴八年级代表队中位数为90
九年级代表队的平均数为90,
九年级代表队的方差为80
故答案为:
(2)
八年级代表队的学生竞赛成绩更好.因为两队平均数与中位数都相同,而八年级代表队的方差小,成绩更稳定
(3)
(名).
答:九年级大约有180名学生可以获得奖状
【点睛】
本题考查了求中位数,平均数,方差,样本估计总体,根据方差作决策,掌握以上知识是解题的关键.
3、
(1)y=-10x+700
(2)当该商品的售价是50元时,月销售利润最大,最大利润是4000元
(3)
【分析】
(1)依题意设y=kx+b,用待定系数法得到结论;
(2)该商品进价是40-3000÷300=30,月销售利润为w元,列出函数解析式,根据二次函数的性质求解;
(3)设利润为w′元,列出函数解析式,根据二次函数的性质求解.
(1)
解:设y=kx+b(k,b为常数,k≠0),
根据题意得:,
解得:,
∴y=-10x+700;
(2)
解:当该商品的进价是40-3000÷300=30元,
设当该商品的售价是x元/件时,月销售利润为w元,
根据题意得:w=y(x-30)=(x-30)(-10x+700)
=-10x2+1000 x-21000=-10(x-50)2+4000,
∴当x=50时w有最大值,最大值为4000
答:当该商品的售价是50元/件时,月销售利润最大,最大利润是4000元;
(3)
解:设利润为w′元,由题意得,
w′=y(x-30-m)
=(x-30-m)(-10x+700)
=-10x2+1000 x+10mx -21000-700m,
∴对称轴是直线x=,
∵-10<0,
∴抛物线开口向下,
∵在售价不超过52元时,每天扣除捐赠后的日销售利润随售价x的增大而增大,
∴,
解得m≥4,
∵,
∴.
【点睛】
本题考查了一次函数的应用,以及二次函数的应用,熟练掌握二次函数的性质是解答本题的关键.
4、
(1)③④
(2)①,;②;③
【分析】
(1)根据对称式的定义,逐一判断即可求解;
(2)①根据,即可求解;
②把化为 ,再代入,即可求解;
③根据,可得,再将原式化为,代入即可求解.
(1)
解:①,不是对称式,
②,不是对称式,
③,是对称式,
④,是对称式,
∴属于对称式的是③④
(2)
①∵,
∴,;
②∵,,
∴,,
∴;
③∵,
∴,
∵
∴
,
∵,
∴,
∴的最小值为.
【点睛】
本题主要考查了分式混合运算的应用,二次根式的混合运算,完全平方公式的应用,平方的非负性,理解新定义是解题的关键.
5、米
【分析】
如图,过作于 可得再利用求解 从而可得答案.
【详解】
解:如图,过作于
结合题意可得:四边形是矩形,
而
所以铁塔高BC为:米
【点睛】
本题考查的是矩形的判定与性质,解直角三角形的应用,熟练的构建直角三角形,再利用锐角三角函数求解直角三角形的边长是解本题的关键.
【真题汇总卷】2022年吉林省长春市中考数学考前摸底测评 卷(Ⅱ)(含答案解析): 这是一份【真题汇总卷】2022年吉林省长春市中考数学考前摸底测评 卷(Ⅱ)(含答案解析),共22页。试卷主要包含了下列说法正确的是,若+,若,则下列分式化简正确的是等内容,欢迎下载使用。
【真题汇编】中考数学考前摸底测评 卷(Ⅱ)(含答案解析): 这是一份【真题汇编】中考数学考前摸底测评 卷(Ⅱ)(含答案解析),共20页。试卷主要包含了已知点A,下列计算正确的是,如果与的差是单项式,那么,若单项式与是同类项,则的值是等内容,欢迎下载使用。
【真题汇编】2022年天津市中考数学考前摸底测评 卷(Ⅱ)(含答案详解): 这是一份【真题汇编】2022年天津市中考数学考前摸底测评 卷(Ⅱ)(含答案详解),共23页。试卷主要包含了已知,则代数式的值是,若,,且a,b同号,则的值为等内容,欢迎下载使用。