【真题汇编】2022年北京市密云县中考数学考前摸底测评 卷(Ⅱ)(含答案详解)
展开2022年北京市密云县中考数学考前摸底测评 卷(Ⅱ)
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、在实数范围内分解因式2x2﹣8x+5正确的是( )
A.(x﹣)(x﹣) B.2(x﹣)(x﹣)
C.(2x﹣)(2x﹣) D.(2x﹣4﹣)(2x﹣4+)
2、某公园改造一片长方形草地,长增加30%,宽减少20%,则这块长方形草地的面积( )
A.增加10% B.增加4% C.减少4% D.大小不变
3、为保护人民群众生命安全,减少交通事故,自2020年7月1日起,我市市民骑车出行必须严格遵守“一盔一带”规定,某头盔经销商经过统计发现:某品牌头盔从5月份到7月份销售量的月增长率相同,若5月份销售200个,7月份销售288个,设月增长率为x则可列出方程( )
A.200(+x)=288 B.200(1+2x)=288
C.200(1+x)²=288 D.200(1+x²)=288
4、某商品原价为 200 元,连续两次平均降价的百分率为 a ,连续两次降价后售价为 148 元, 下面所列方程正确的是 ( )
A.200(1 a)2 148 B.200(1 a)2 148
C.200(1 2a)2 148 D.200(1 a 2) 148
5、下列命题正确的是
A.零的倒数是零
B.乘积是1的两数互为倒数
C.如果一个数是,那么它的倒数是
D.任何不等于0的数的倒数都大于零
6、如图是一个正方体展开图,将其围成一个正方体后,与“罩”字相对的是( ).
A.勤 B.洗 C.手 D.戴
7、下列图形是中心对称图形的是( ).
A. B.
C. D.
8、一个圆形人工湖如图所示,弦AB是湖上的一座桥,已知桥AB长100m,测得圆周角,则这个人工湖的直径AD为( )m.
A. B. C. D.200
9、若一个多边形截去一个角后变成了六边形,则原来多边形的边数可能是( )
A.5或6 B.6或7 C.5或6或7 D.6或7或8
10、神舟号载人飞船于2021年10月16日凌晨成功对接中国空间站,自升空以来神舟十三号飞船每天绕地球16圈,按地球赤道周长计算神舟十三号飞船每天飞行约641200千米,641200用科学记数法表示为( )
A. B. C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、桌子上放有6枚正面朝上的硬币,每次翻转其中的4枚,至少翻转_________次能使所有硬币都反面朝上.
2、已知关于x的一元二次方程(m﹣1)x2﹣2mx+m+3=0有两个不相等的实数根,则m的取值范围是 ___;
3、把一些笔分给几名学生,如果每人分5支,那么余7支;如果前面的学生每人分6支,那么最后一名学生能分到笔但分到的少于3支,则共有学生___人.
4、的倒数是________;绝对值等于3的数是________.
5、已知x为不等式组的解,则的值为______.
三、解答题(5小题,每小题10分,共计50分)
1、一副三角板按如图1方式拼接在一起,其中边OA、OC与直线EF重合,∠AOB=45°,∠COD=60°.
(1)求图1中∠BOD的度数.
(2)如图2,三角板COD固定不动,将三角板AOB绕点O按顺时针方向旋转一个角度(即∠AOE=),在转动过程中两个三角板一直处于直线EF的上方.
①当OB平分OA、OC、OD其中的两边组成的角时,求满足要求的所有旋转角度的值;
②在转动过程中是否存在∠BOC=2∠AOD?若存在,求此时α的值;若不存在,请说明理由.
2、计算:
3、如图,已知在△ABC中,AB=AC,∠BAC=80°,AD⊥BC,AD=AB,联结BD并延长,交AC的延长线干点E,求∠ADE的度数.
4、如图,,点C、D分别在射线OA、OB上,且满足.将线段DC绕点D顺时针旋转60°,得到线段DE.过点E作OC的平行线,交OB反向延长线于点F.
(1)根据题意完成作图;
(2)猜想DF的长并证明;
(3)若点M在射线OC上,且满足,直接写出线段ME的最小值.
5、如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,F为AB延长线上一点,连接CF,DF.
(1)若OE=3,BE=2,求CD的长;
(2)若CF与⊙O相切,求证DF与⊙O相切.
-参考答案-
一、单选题
1、B
【分析】
解出方程2x2-8x+5=0的根,从而可以得到答案.
【详解】
解:∵方程2x2-8x+5=0中,a=2,b=-8,c=5,
∴Δ=(-8)2-4×2×5=64-40=24>0,
∴x=,
∴2x2-8x+5=2(x﹣)(x﹣),
故选:B.
【点睛】
本题考查了解一元二次方程,实数范围内分解因式,求出一元二次方程的根是解题的关键.
2、B
【分析】
设长方形草地的长为x,宽为y,则可求得增加后长及减少后的宽,从而可求得现在的面积,与原面积比较即可得到答案.
【详解】
设长方形草地的长为x,宽为y,则其面积为xy;增加后长为(1+30%)x,减少后的宽为(1-20%)y,此时的面积为(1+30%)x×(1-20%)y=1.04xy,1.04xy−xy=0.04xy,0.04xy÷xy×100%=4%.即这块长方形草地的面积比原来增加了4%.
故选:B
【点睛】
本题考查了列代数式,根据题意设长方形草地的长与宽,进而求得原来的面积及长宽变化后的面积是关键.
3、C
【分析】
设月增长率为x,根据等量关系用增长率表示7月份的销售量与销售288相等,可列出方程200(1+x)²=288即可.
【详解】
解:设月增长率为x,则可列出方程200(1+x)²=288.
故选C.
【点睛】
本题考查列一元二次方程解增长率问题应用题,掌握列一元二次方程解增长率问题应用题方法与步骤,抓住等量关系列方程是解题关键.
4、B
【分析】
第一次降价后价格为,第二次降价后价格为整理即可.
【详解】
解:第一次降价后价格为
第二次降价后价格为
故选B.
【点睛】
本题考查了一元二次方程的应用.解题的关键在于明确每次降价前的价格.
5、B
【分析】
根据倒数的概念、有理数的大小比较法则判断.
【详解】
解:、零没有倒数,本选项说法错误;
、乘积是1的两数互为倒数,本选项说法正确;
、如果,则没有倒数,本选项说法错误;
、的倒数是,,则任何不等于0的数的倒数都大于零说法错误;
故选:.
【点睛】
本题考查了有理数的乘法及倒数的概念,熟练掌握倒数概念是关键.
6、C
【分析】
本题要有一定的空间想象能力,可通过折纸或记口诀的方式找到“罩”的对面应该是“手”.
【详解】
解:正方体的表面展开图,相对的面之间一定相隔一个正方形,
“罩”相对的面是“手”;
故选:C.
【点睛】
可以通过折一个正方体再给它展开,通过结合立体图形与平面图形的转化,建立空间观念,解决此类问题.还可以直接记口诀找对面:"跳一跳找对面;找不到,拐个弯".
7、A
【分析】
把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,据此可得结论.
【详解】
解:选项B、C、D均不能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以不是中心对称图形,
选项A能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以是中心对称图形,
故选:A.
【点睛】
本题主要考查了中心对称图形,掌握中心对称图形的定义是解题关键.
8、B
【分析】
连接BD,利用同弧所对圆周角相等以及直径所对的角为直角,求证为等腰直角三角形,最后利用勾股定理,求出AD即可.
【详解】
解:连接BD,如下图所示:
与所对的弧都是.
.
所对的弦为直径AD,
.
又,
为等腰直角三角形,
在中,,
由勾股定理可得:.
故选:B.
【点睛】
本题主要是考查了圆周角定理以及直径所对的圆周角为直角和勾股定理,熟练运用圆周角定理以及直径所对的圆周角为直角,得到对应的直角三角形,再用勾股定理求解边长,是解决本题的主要思路.
9、C
【分析】
实际画图,动手操作一下,可知六边形可以是五边形、六边形、七边形截去一个角后得到.
【详解】
解:如图,原来多边形的边数可能是5,6,7.
故选C
【点睛】
本题考查的是截去一个多边形的一个角,解此类问题的关键是要从多方面考虑,注意不能漏掉其中的任何一种情况.
10、B
【分析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.
【详解】
解:641200用科学记数法表示为:641200=,
故选择B.
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
二、填空题
1、3
【分析】
用“”表示正面朝上,用“”表示正面朝下,找出最少翻转次数能使杯口全部朝下的情况即可得答案
【详解】
用“”表示正面朝上,用“”表示正面朝下,
开始时
第一次
第二次
第三次
至少翻转3次能使所有硬币都反面朝上.
故答案为:3
【点睛】
本题考查了正负数的应用,根据朝上和朝下的两种状态对应正负号,尝试最少的次数满足题意是解题的关键.
2、m<且m≠1
【分析】
根据一元二次方程的定义和判别式的意义得到不等式组:,然后解不等式组即可求出m的取值范围.
【详解】
解:∵关于x的一元二次方程(m-1)x2-2mx+m+3=0有两个不相等的实数根,
∴,
解得m<且m≠1.
故答案为:m<且m≠1.
【点睛】
本题主要考查根的判别式,熟练掌握一元二次方程的根与判别式间的关系是解题的关键.
3、11或12
【分析】
根据每人分5支,那么余7支;如果前面的学生每人分6支,那么最后一名学生能分到笔但分到的少于3支,得出5x+7≥6(x-1)+1,且6(x-1)+3>5x+7,分别求出即可.
【详解】
解:假设共有学生x人,根据题意得出:
,
解得:10<x≤12.
因为x是正整数,所以符合条件的x的值是11或12,
故答案为:11或12.
【点睛】
此题主要考查了一元一次不等式组的应用,根据题意找出不等关系得出不等式组是解决问题的关键.
4、
【分析】
根据倒数的定义和绝对值的性质即可得出答案.
【详解】
解:的倒数是;绝对值等于3的数为±3,
故答案为:,±3.
【点睛】
此题考查了绝对值的性质、倒数的定义,若两个数的乘积是1,我们就称这两个数互为倒数.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.
5、2
【分析】
解不等式组得到x的范围,再根据绝对值的性质化简.
【详解】
解:,
解不等式①得:,
解不等式②得:,
∴不等式组的解集为:,
∴
=
=
=2
故答案为:2.
【点睛】
本题考查了解不等式组,绝对值的性质,解题的关键是解不等式组得到x的范围.
三、解答题
1、
(1)75
(2)①旋转角α的值为30°,90°,105°;②当α=105°或125°时,存在∠BOC=2∠AOD.
【分析】
(1)根据平平角的定义即可得到结论;
(2)①根据已知条件和角平分线的定义即可得到结论;
②当OA在OD的左侧时,当OA在OD的右侧时,列方程即可得到结论.
(1)
解:∵∠AOB=45°,∠COD=60°,
∴∠BOD=180°-∠AOB-∠COD=75°,
故答案为:75;
(2)
解:①当OB平分∠AOD时,
∵∠AOE=α,∠COD=60°,
∴∠AOD=180°-∠AOE-∠COD=120°-α,
∴∠AOB=∠AOD=60°-α=45°,
∴α=30°,
当OB平分∠AOC时,
∵∠AOC=180°-α,
∴∠AOB=90°-α=45°,
∴α=90°;
当OB平分∠DOC时,
∵∠DOC=60°,
∴∠BOC=30°,
∴α=180°-45°-30°=105°,
综上所述,旋转角度α的值为30°,90°,105°;
②当OA在OD的左侧时,则∠AOD=120°-α,∠BOC=135°-α,
∵∠BOC=2∠AOD,
∴135°-α=2(120°-α),
∴α=105°;
当OA在OD的右侧时,则∠AOD=α-120°,∠BOC=135°-α,
∵∠BOC=2∠AOD,
∴135°-α=2(α-120°),
∴α=125°,
综上所述,当α=105°或125°时,存在∠BOC=2∠AOD.
【点睛】
本题考查了角的计算,特殊角,角平分线的定义,正确的理解题意是解题的关键.
2、
【分析】
根据二次根式的性质化简,有理数的乘方,零次幂,特殊角的三角函数值代入进行实数的运算即可
【详解】
【点睛】
本题考查了二次根式的性质化简,有理数的乘方,零次幂,特殊角的三角函数值,正确的计算是解题的关键.
3、110°
【分析】
根据等腰三角形三线合一的性质可求∠BAD=∠CAD=∠BAC=40°,根据等腰三角形的性质可求∠BDA,再根据三角形内角和定理即可求解.
【详解】
解:∵AB=AC,∠BAC=80°,AD⊥BC,
∴∠BAD=∠CAD=∠BAC=40°,
∵AD=AB,
∴∠BDA=×(180°﹣40°)=70°,
∴∠ADE=180°﹣∠BDA=180°﹣70°=110°.
【点睛】
本题考查的是三角形的外角的性质,等腰三角形的性质,掌握“等边对等角,等腰三角形的三线合一”是解本题的关键.
4、(1)见解析;(2),证明见解析;(3)
【分析】
(1)根据题意作出图形即可;
(2)在OB上截取,连接CP、CE、OE,得出、是等边三角形,根据SAS证明,由全等三角形的性质和平行线的性质得是等边三角形,可得即可;
(3)过点M作,连接,作等边,即当点E到点时,ME得最小值,由得,故可求出、,即可得出ME的最小值.
【详解】
(1)根据题意作图如下所示:
(2),证明如下:
如图,在OB上截取,连接CP、CE、OE.
∵,,
∴是等边三角形,
∴,,
∵,,
∴是等边三角形,
∴,,
∵,
∴,
在和中,
,
∴,
∴,,
∴,
∵,
∴,
∴是等边三角形,
∴,
∴,
∴,
∵,
∴,
(3)
如图,过点M作,连接,作等边,即当点E到点时,ME得最小值,
∵,
∴,
∴,,
故ME的最小值为.
【点睛】
本题考查全等三角形的判定与性质,等边三角形的判定与性质,掌握相关知识点的应用是解题的关键.
5、(1)8;(2)见解析
【分析】
(1)连接OC,利用勾股定理求解CE=4,再利用垂径定理可得答案;
(2)证明 再证明 可得 从而可得结论.
【详解】
(1)解:连接OC,
∵CD⊥AB,
∴CE=DE,
∴OC=OB=OE+BE=3+2=5,
在Rt△OCE中,∠OEC=90°,由勾股定理得:CE2=OC2-OE2,
∴CE2=52-32,
∴CE=4,
∴CD=2CE=8.
(2)解:连接OD,
∵CF与⊙O相切,
∴∠OCF=90°,
∵CE=DE,CD⊥AB,
∴CF=DF,
又OF=OF,OC=OD,
∴△OCF≌△ODF,
∴∠ODF=∠OCF=90°,即OD⊥DF.
又D在⊙O上,
∴DF与⊙O相切.
【点睛】
本题考查的是圆的基本性质,垂径定理的应用,切线的性质与判定,证明△OCF≌△ODF得到∠ODF=∠OCF=90°是解本题的关键.
【真题汇总卷】2022年北京市密云县中考数学真题模拟测评 (A)卷(含答案详解): 这是一份【真题汇总卷】2022年北京市密云县中考数学真题模拟测评 (A)卷(含答案详解),共23页。试卷主要包含了下列图形是中心对称图形的是.,下列命题中,真命题是,有下列说法,如图,在中,,,则的值为等内容,欢迎下载使用。
【真题汇编】2022年天津市中考数学考前摸底测评 卷(Ⅱ)(含答案详解): 这是一份【真题汇编】2022年天津市中考数学考前摸底测评 卷(Ⅱ)(含答案详解),共23页。试卷主要包含了已知,则代数式的值是,若,,且a,b同号,则的值为等内容,欢迎下载使用。
【真题汇编】2022年北京市平谷区中考数学考前摸底测评 卷(Ⅱ)(含答案详解): 这是一份【真题汇编】2022年北京市平谷区中考数学考前摸底测评 卷(Ⅱ)(含答案详解),共24页。试卷主要包含了多项式去括号,得,下列说法中,不正确的是,下列四个实数中,无理数是,已知,,且,则的值为等内容,欢迎下载使用。