![【真题汇编】2022年北京市朝阳区中考数学第一次模拟试题(含详解)01](http://img-preview.51jiaoxi.com/2/3/12677011/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![【真题汇编】2022年北京市朝阳区中考数学第一次模拟试题(含详解)02](http://img-preview.51jiaoxi.com/2/3/12677011/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![【真题汇编】2022年北京市朝阳区中考数学第一次模拟试题(含详解)03](http://img-preview.51jiaoxi.com/2/3/12677011/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
【真题汇编】2022年北京市朝阳区中考数学第一次模拟试题(含详解)
展开2022年北京市朝阳区中考数学第一次模拟试题
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、已知和是同类项,那么的值是( )
A.3 B.4 C.5 D.6
2、抛物线的顶点坐标是( )
A. B. C. D.
3、在平面直角坐标系xOy中,点A(2,1)与点B(0,1)关于某条直线成轴对称,这条直线是( )
A.轴 B.轴
C.直线(直线上各点横坐标均为1) D.直线(直线上各点纵坐标均为1)
4、如图,为直线上的一点,平分,,,则的度数为( )
A.20° B.18° C.60° D.80°
5、下列说法中,不正确的是( )
A.是多项式 B.的项是,,1
C.多项式的次数是4 D.的一次项系数是-4
6、将抛物线y=2x2向下平移3个单位后的新抛物线解析式为( )
A.y=2(x﹣3)2 B.y=2(x+3)2 C.y=2x2﹣3 D.y=2x2+3
7、下图中能体现∠1一定大于∠2的是( )
A. B.
C. D.
8、下列说法中,正确的有( )
①射线AB和射线BA是同一条射线;②若,则点B为线段AC的中点;③连接A、B两点,使线段AB过点C;④两点的所有连线中,线段最短.
A.0个 B.1个 C.2个 D.3个
9、下列四个实数中,无理数是( )
A. B.0.131313… C. D.
10、如图,四棱柱的高为9米,底面是边长为6米的正方形,一只蚂蚁从如图的顶点A开始,爬向顶点B.那么它爬行的最短路程为( )
A.10米 B.12米 C.15米 D.20米
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、等边的边长为2,P,Q分别是边AB,BC上的点,连结AQ,CP交于点O.以下结论:①若,则;②若,则;③若点P和点Q分别从点A和点C同时出发,以相同的速度向点B运动(到达点B就停止),则点O经过的路径长为,其中正确的是______(序号).
2、 “x与2的差不大于3”用不等式表示为___.
3、中午放学后,有a个同学在学校一食堂门口等侯进食堂就餐,由于二食堂面积较大,所以配餐前二食堂等待就餐的学生人数是一食堂的2倍,开始配餐后,仍有学生续前来排队等候就餐,设一食堂排队的学生人数按固定的速度增加,且二食堂学生人数增加的速度是一食堂的2倍,两个食堂每个窗口阿姨配餐的速度是一样的,一食堂若开放12个配餐窗口,则需10分钟才可为排队就餐的同学配餐完毕;二食堂若开放2个配餐窗口,则14分钟才可为排队就餐的同学配餐完毕;若需要在15分钟内配餐完毕,则两个食堂至少需要同时一共开放___个配餐窗口.
4、已知射线,在射线上截取OC=10cm,在射线上截取CD=6cm,如果点、点分别是线段、的中点,那么线段的长等于_______cm.
5、如图,将△ABC绕点A顺时针旋转,使点C落在边AB上的点E处,点B落在点D处,联结BD,如果∠DAC=∠DBA,那么∠BAC=___度.
三、解答题(5小题,每小题10分,共计50分)
1、计算:
(1)-14-[4-(-3)2] (2)(- +)×(-24)
2、计算:
(1)
(2)
3、利用幂的运算性质计算:﹣×÷(结果用幂的形式表示).
4、已知关于x的方程x2﹣+k=0有实数根,求k的取值范围.
5、解不等式:﹣2<.
-参考答案-
一、单选题
1、C
【分析】
把字母相同且相同字母的指数也分别相同的几个项叫做同类项,根据同类项的定义即可解决.
【详解】
由题意知:n=2,m=3,则m+n=3+2=5
故选:C
【点睛】
本题主要考查了同类项的概念,掌握同类项的概念是解答本题的关键.
2、A
【分析】
根据二次函数y=a(x-h)2+k的性质解答即可.
【详解】
解:抛物线的顶点坐标是,
故选A.
【点睛】
本题考查了二次函数y=a(x-h)2+k(a,h,k为常数,a≠0)的性质,熟练掌握二次函数y=a(x-h)2+k的性质是解答本题的关键. y=a(x-h)2+k是抛物线的顶点式,a决定抛物线的形状和开口方向,其顶点是(h,k),对称轴是x=h.
3、C
【分析】
利用成轴对称的两个点的坐标的特征,即可解题.
【详解】
根据A点和B点的纵坐标相等,即可知它们的对称轴为.
故选:C.
【点睛】
本题考查坐标与图形变化—轴对称,掌握成轴对称的两个点的坐标的特点是解答本题的关键.
4、A
【分析】
根据角平分线的定义得到,从而得到,再根据可得,即可求出结果.
【详解】
解:∵OC平分,
∴,
∴,
∵,
∴,
∴,
故选:A.
【点睛】
本题主要考查角的计算的知识点,运用好角的平分线这一知识点是解答的关键.
5、C
【分析】
根据多项式的定义及项数、次数定义依次判断.
【详解】
解:A. 是多项式,故该项不符合题意;
B. 的项是,,1,故该项不符合题意;
C. 多项式的次数是5,故该项符合题意;
D. 的一次项系数是-4,故该项不符合题意;
故选:C.
【点睛】
此题考查了多项式的定义及项数的定义、次数的定义,正确掌握多项式的各定义是解题的关键.
6、C
【分析】
根据“上加下减”的原则进行解答即可.
【详解】
解:将抛物线y=2x2向下平移3个单位后的新抛物线解析式为:y=2x2-3.
故选:C.
【点睛】
本题考查的是二次函数的图象与几何变换,熟知函数图象平移的规律是解答此题的关键.
7、C
【分析】
由对顶角的性质可判断A,由平行线的性质可判断B,由三角形的外角的性质可判断C,由直角三角形中同角的余角相等可判断D,从而可得答案.
【详解】
解:A、∠1和∠2是对顶角,∠1=∠2.故此选项不符合题意;
B、如图,
若两线平行,则∠3=∠2,则
若两线不平行,则大小关系不确定,所以∠1不一定大于∠2.故此选项不符合题意;
C、∠1是三角形的外角,所以∠1>∠2,故此选项符合题意;
D、根据同角的余角相等,可得∠1=∠2,故此选项不符合题意.
故选:C.
【点睛】
本题考查的是对顶角的性质,平行线的性质,直角三角形中两锐角互余,三角形的外角的性质,同角的余角相等,掌握几何基本图形,基本图形的性质是解本题的关键.
8、B
【分析】
①射线有方向性,描述射线时的第1个字母表示它的端点,所以①不对.
②不明确A、B、C是否在同一条直线上.所以错误.
③不知道C是否在线段AB上,错误.
④两点之间线段最短,正确.
【详解】
①射线AB和射线BA的端点不同不是同一条射线.所以错误.
②若AB和BC为不在同一条直线的两条线段,B就不是线段AC的中点.所以错误.
③若C点不在线段AB两点的连线上,那么C点就无法过线段AB.所以错误.
④两点之间线段最短,所以正确.
故选:B.
【点睛】
本题考查了射线、线段中点的含义.解题的关键是根据两点之间线段最短,射线、线段的中点的定义,角平分线的定义对各小题分析判断即可得解.
9、D
【分析】
无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称,即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.无理数包括无线不循环小数和开方不能开尽的数,由此即可判定选择项.
【详解】
解:A.,是整数,属于有理数,故本选项不合题意;
B.0.131313…是无限循环小数,属于有理数,故本选项不合题意;
C.是分数,属于有理数,故本选项不合题意;
D.是无理数,故本选项符合题意;
故选:D.
【点睛】
题目主要考查立方根,无理数,有理数,理解无理数的定义是解题关键.
10、C
【分析】
将立体图形展开,有两种不同的展法,连接AB,利用勾股定理求出AB的长,找出最短的即可.
【详解】
解:如图,
(1)AB==;
(2)AB==15,
由于15<,
则蚂蚁爬行的最短路程为15米.
故选:C.
【点睛】
本题考查了平面展开--最短路径问题,要注意,展开时要根据实际情况将图形安不同形式展开,再计算.
二、填空题
1、①③
【分析】
①根据全等三角形的性质可得∠BAQ=∠ACP,再由三角形的外角性质即可求解;第②结论有两种情况,准确画出图之后再来计算和判断;③要先判断判断轨迹(通过对称性或者全等)在来计算路径长.
【详解】
解:∵为等边三角形,
∴ ,
∵,
∴ ,
∴ ,
∵ ,
∴ ,
∴ ,
故①正确;
当时可分两种情况,
第一种,如①所证时,且 时,
∵,
∴ ,
第二种如图,时,若 时,则大小无法确定,
故②错误;
由题意知 ,
∵为等边三角形,
∴ ,
∴ ,
∴点O运动轨迹为AC边上中线,
∵的边长为2,
∴AC上边中线为 ,
∴点O经过的路径长为,
故③正确;
故答案为:①③.
【点睛】
此题是三角形综合题,考查了等边三角形的性质、全等三角形的判定与性质、三角形的外角性质等知识的综合应用.本题综合性强,熟练掌握等边三角形的性质是解题关键.
2、x-2≤3
【分析】
首先表示出x与2的差为(x-2),再小于等于3,列出不等式即可.
【详解】
解:由题意可得:x-2≤3.
故答案为:x-2≤3.
【点睛】
此题主要考查了由实际问题抽象出一元一次不等式,关键是抓住关键词,选准不等号.
3、29
【分析】
设每分钟来一食堂就餐的人数为x人,食堂每个窗口阿姨配餐的速度为每分钟y人,则每分钟来二食堂就餐的人数为2x人,根据“一食堂若开放12个配餐窗口,则需10分钟才可为排队就餐的同学配餐完毕;二食堂若开放20个配餐窗口,则14分钟才可为排队就餐的同学配餐完毕”,即可得出关于x,y,a的三元一次方程组,解之即可用含y的代数式表示出a,x,设设两个食堂同时一共开放m个配餐窗口,根据需要在15分钟内配餐完毕,即可得出关于m的一元一次不等式,解之取其中的最小值即可得出结论.
【详解】
解:设每分钟来一食堂就餐的人数为x人,食堂每个窗口阿姨配餐的速度为每分钟y人,则每分钟来二食堂就餐的人数为2x人,
依题意得:,
∴,
设两个食堂同时一共开放m个配餐窗口,
依题意得:15my≥a+2a+15×(x+2x),
解得:m≥29.
故答案为:29.
【点睛】
本题考查了三元一次方程组的应用以及一元一次不等式的应用,找准等量关系,正确列出三元一次方程组是解题的关键.
4、2
【分析】
根据OC、CD和中点A、B求出AC和BC,利用AB=AC-BC即可.
【详解】
解:如图所示,
,,
点、点分别是线段、的中点,
,,
.
故答案为:2.
【点睛】
本题考查线段的和差计算,以及线段的中点,能准确画出对应的图形是解题的关键.
5、36
【分析】
设∠BAC=x,依据旋转的性质,可得∠DAE=∠BAC=x,∠ADB=∠ABD=2x,再根据三角形内角和定理即可得出x.
【详解】
解:设∠BAC=x,由旋转的性质,可得
∠DAE=∠BAC=x,
∴∠DAC=∠DBA=2x,
又∵AB=AD,
∴∠ADB=∠ABD=2x,
△ABD中,∠BAD+∠ABD+∠ADB=180°,
∴x+2x+2x=180°,
∴x=36°,
即∠BAC=36°,
故答案为:36.
【点睛】
本题主要考查了旋转的性质以及三角形内角和定理,解题时注意:旋转前、后的图形全等.
三、解答题
1、(1)4;(2)-22
【分析】
(1)先计算乘方,再计算加减法;
(2)根据乘法分配律计算.
【详解】
解:(1)-14-[4-(-3)2]
=-1-(-5)
=4;
(2)(- +)×(-24)
=×(-24)-×(-24)+×(-24)
=-6+20-36
=-22.
【点睛】
此题考查了有理数的计算,正确掌握含乘方的有理数的混合运算法则、乘法分配律法则是解题的关键.
2、
(1)原式
(2)原式
【分析】
(1)先算乘除,再算加减;
(2)先做括号内的运算,按小括号、中括号依次进行,然后先乘方,再乘除,最后再加减.
(1)
解:
原式
(2)
解:
原式
【点睛】
本题考查有理数的混合运算.应注意以下运算顺序:①先乘方,再乘除,最后加减;②同级运算,从左到右进行;③如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.
3、
【分析】
直接利用分指数幂的以及同底数幂的乘法和同底数幂的除法运算法则分别化简得出答案.
【详解】
解:,
,
,
,
.
【点睛】
题目主要考查分数指数幂的运算及同底数幂的乘法和同底数幂的除法,熟练掌握各运算法则是解题关键.
4、
【分析】
根据根的判别式的意义得到△,还有被开方式,然后解不等式组即可.
【详解】
解:根据题意得△且,
解得:.
【点睛】
本题考查了根的判别式:一元二次方程的根与△有如下关系:当△时,方程有两个不相等的两个实数根;当△时,方程有两个相等的两个实数根;当△时,方程无实数根,本题关键还应考虑被开方式非负.
5、x>
【分析】
将不等式变形,先去分母,再去括号,移项、合并同类项即可.
【详解】
解:不等式整理得,,
去分母,得2(2x+1)-12<3(3x-2).
去括号,得4x+2-12<9x-6.
移项,得4x-9x<-6+12-2.
合并同类项,得-5x<4,
系数化为1,得x>.
【点睛】
本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.
【真题汇编】中考数学备考真题模拟测评 卷(Ⅰ)(含详解): 这是一份【真题汇编】中考数学备考真题模拟测评 卷(Ⅰ)(含详解),共24页。试卷主要包含了若,则的值是,如图,在中,,,则的值为,下列式中,与是同类二次根式的是,下列命题中,真命题是等内容,欢迎下载使用。
【真题汇编】中考数学模拟真题 (B)卷(含详解): 这是一份【真题汇编】中考数学模拟真题 (B)卷(含详解),共19页。试卷主要包含了正八边形每个内角度数为,在数2,-2,,中,最小的数为,如果与的差是单项式,那么,如图所示,该几何体的俯视图是等内容,欢迎下载使用。
【真题汇编】2022年北京市平谷区中考数学备考真题模拟测评 卷(Ⅰ)(含详解): 这是一份【真题汇编】2022年北京市平谷区中考数学备考真题模拟测评 卷(Ⅰ)(含详解),共20页。试卷主要包含了下列图形中,是中心对称图形的是,下列判断错误的是,二次函数 y=ax2+bx+c等内容,欢迎下载使用。