![【难点解析】2022年辽宁省大石桥市中考数学模拟测评 卷(Ⅰ)(含答案及详解)01](http://img-preview.51jiaoxi.com/2/3/12676746/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![【难点解析】2022年辽宁省大石桥市中考数学模拟测评 卷(Ⅰ)(含答案及详解)02](http://img-preview.51jiaoxi.com/2/3/12676746/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![【难点解析】2022年辽宁省大石桥市中考数学模拟测评 卷(Ⅰ)(含答案及详解)03](http://img-preview.51jiaoxi.com/2/3/12676746/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
【难点解析】2022年辽宁省大石桥市中考数学模拟测评 卷(Ⅰ)(含答案及详解)
展开2022年辽宁省大石桥市中考数学模拟测评 卷(Ⅰ)
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、下列图形绕直线旋转一周,可以得到圆柱的是( )
A. B. C. D.
2、将正方体的表面分别标上数字1,2,3,并在它们的对面分别标上一些负数,使它的任意两个相对面的数字之和为0,将这个正方体沿某些棱剪开,得到以下的图形,这些图形中,其中的x对应的数字是﹣3的是( )
A. B.
C. D.
3、若反比例函数的图象经过点,则该函数图象不经过的点是( )
A.(1,4) B.(2,-2) C.(4,-1) D.(1,-4)
4、如图,的三个顶点和它内部的点,把分成个互不重叠的小三角形;的三个顶点和它内部的点,,把分成个互不重叠的小三角形;的三个顶点和它内部的点,,,把分成个互不重叠的小三角形;的三个顶点和它内部的点,,,…,,把分成( )个互不重叠的小三角形.
A. B. C. D.
5、和按如图所示的位置摆放,顶点B、C、D在同一直线上,,,.将沿着翻折,得到,将沿着翻折,得,点B、D的对应点、与点C恰好在同一直线上,若,,则的长度为( ).
A.7 B.6 C.5 D.4
6、据统计,11月份互联网信息中提及“梅州”一词的次数约为48500000,数据48500000科学记数法表示为( )
A. B. C. D.
7、如图,在△ABC和△DEF中,AC∥DF,AC=DF,点A、D、B、E在一条直线上,下列条件不能判定△ABC≌△DEF的是( ).
A. B.
C. D.
8、下列图形中,既是轴对称图形又是中心对称图形是( )
A. B. C. D.
9、如图,已知菱形OABC的顶点O(0,0),B(2,2),菱形的对角线的交于点D;若将菱形OABC绕点O逆时针旋转,每秒旋转45°,从如图所示位置起,经过60秒时,菱形的对角线的交点D的坐标为( )
A.(1,1) B.(﹣1,﹣1) C.(-1,1) D.(1,﹣1)
10、下列关于x的方程中,一定是一元二次方程的是( )
A. B.
C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,若用我们数学课本上采用的科学计算器进行计算,其按键顺序为:则输出结果应为______.
2、若关于x的二次三项式是完全平方式,则k=____.
3、已知p、q是实数,有且只有三个不同的x值满足方程|x2+px+q|=2,则q的最小值 ___.
4、如图,将两个边长分别为a和b的正方形拼在一起,B,C,G三点在同一直线上,连接BD和BF,若这两个正方形的边长满足a+b=10,ab=20,则阴影部分的面积为____.
5、如图,在平面直角坐标系xOy中,菱形ABCD的顶点D在x轴上,边BC在y轴上,若点A的坐标为(12,13),则点C的坐标是___.
三、解答题(5小题,每小题10分,共计50分)
1、如图,数轴上A和B.
(1)点A表示 ,点B表示 .
(2)点C表示最小的正整数,点D表示的倒数,点E表示,在数轴上描出点C、D、E.
(3)将该数轴上点A、B、C、D、E表示的数用“<”连起来: .
2、在数轴上,表示数m与n的点之间的距离可以表示为|m﹣n|.例如:在数轴上,表示数﹣3与2的点之间的距离是5=|﹣3﹣2|,表示数﹣4与﹣1的点之间的距离是3=|﹣4﹣(﹣1)|.利用上述结论解决如下问题:
(1)若|x﹣5|=3,求x的值;
(2)点A、B为数轴上的两个动点,点A表示的数是a,点B表示的数是b,且|a﹣b|=6(b>a),点C表示的数为﹣2,若A、B、C三点中的某一个点是另两个点组成的线段的中点,求a、b的值.
3、为纪念一二·九运动86周年,我校组织八年级学生远赴新密参观豫西抗日纪念馆,学校负责人前去联系车辆,目前有甲、乙两种类型的客车供学校租用,据了解:3辆甲型客车与4辆乙型客车的总载客量为276人,2辆甲型客车与3辆乙型客车的总载客量为199人.
(1)请帮算一算:1辆甲型客车与1辆乙型客车的载客量分别是多少人?
(2)我校八年级学生共850人,拟租用甲、乙两型客车共20辆,一次将全部师生送到指定地点.若每辆甲型客车的租金为800元,每辆乙型客车的租金为1000元,请给出最节省费用的租车方案,并求出最低费用.
4、已知点A在数轴上对应的数为a,点B在数轴上对应的数为b,且,A、B之间的距离记为或,请回答问题:
(1)直接写出a,b,的值,a=______,b=______,______.
(2)设点P在数轴上对应的数为x,若,则x=______.
(3)如图,点M,N,P是数轴上的三点,点M表示的数为4,点N表示的数为-1,动点P表示的数为x.
①若点P在点M、N之间,则______;
②若,则x=______;
③若点P表示的数是-5,现在有一蚂蚁从点P出发,以每秒1个单位长度的速度向右运动,当经过多少秒时,蚂蚁所在的点到点M、点N的距离之和是8?
5、如图,在中,D是边的中点,过点B作交的延长线于点E,点N是线段上一点,连接交于点M,且.
(1)若,,求的度数;
(2)求证:.
-参考答案-
一、单选题
1、A
【分析】
根据面动成体,直角三角形绕直角边旋转是圆锥,矩形绕边旋转是圆柱,直角梯形绕直角边旋转是圆台,半圆案绕直径旋转是球,可得答案.
【详解】
解:A.旋转后可得圆柱,故符合题意;
B. 旋转后可得球,故不符合题意;
C. 旋转后可得圆锥,故不符合题意;
D. 旋转后可得圆台,故不符合题意;
故选:A.
【点睛】
本题考查了面动成体的知识,熟记各种图形旋转得出的立体图形是解题关键.
2、A
【分析】
根据正方体的表面展开图,相对的面之间一定相隔一个正方形,求出各选项的x的值即可.
【详解】
解: A.x=-3
B.x=-2
C.x=-2
D.x=-2
故答案为:A
【点睛】
本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.
3、A
【分析】
由题意可求反比例函数解析式,将点的坐标一一打入求出xy的值,即可求函数的图象不经过的点.
【详解】
解:因为反比例函数的图象经过点,
所以,
选项A,该函数图象不经过的点(1,4),故选项A符合题意;
选项B,该函数图象经过的点(2,-2),故选项B不符合题意;
选项C,该函数图象经过的点(4,-1),故选项C不符合题意;
选项B,该函数图象经过的点(1,-4),故选项D不符合题意;
故选A.
【点睛】
考查了反比例函数图象上点的坐标特征,熟练运用反比例函数图象上点的坐标满足其解析式是本题的关键.
4、B
【分析】
从前三个内部点可总结规律,即可得三角形内部有n个点时有个互不重叠的小三角形.
【详解】
由,,三个内部点可总结出规律每增加一个内部点三角形内部增加两个小三角形,
∴的三个顶点和它内部的点,,,…,,把分成个互不重叠的小三角形.
故选:B.
【点睛】
本题考查了图形类规律问题,图形规律就是根据所给出的图形的结构特特征,需要认真分析观察、分析、归纳,从图形所蕴含的数字信息总结出一般的数式规律,然后再应用规律做题.用代数式表示数字或图形的规律,有其自身的解题规律,掌握其正确的解题方法,这类题目将会迎刃而解.
5、A
【分析】
由折叠的性质得,,故,,推出,由,推出,根据AAS证明,即可得,,设,则,由勾股定理即可求出、,由计算即可得出答案.
【详解】
由折叠的性质得,,
∴,,
∴,
∵,
∴,
∴,
在与中,
,
∴,
∴,,
设,则,
∴,
解得:,
∴,,
∴.
故选:A.
【点睛】
本题考查折叠的性质以及全等三角形的判定与性质,掌握全等三角形的判定定理和性质是解题的关键.
6、C
【分析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.
【详解】
解:48500000科学记数法表示为:48500000=.
故答案为:.
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
7、D
【分析】
根据各个选项中的条件和全等三角形的判定可以解答本题.
【详解】
解:∵AC∥DF,
∴∠A=∠EDF,
∵AC=DF,∠A=∠EDF,添加∠C=∠F,根据ASA可以证明△ABC≌△DEF,故选项A不符合题意;
∵AC=DF,∠A=∠EDF,添加∠ABC=∠DEF,根据AAS可以证明△ABC≌△DEF,故选项B不符合题意;
∵AC=DF,∠A=∠EDF,添加AB=DE,根据SAS可以证明△ABC≌△DEF,故选项C不符合题意;
∵AC=DF,∠A=∠EDF,添加BC=EF,不可以证明△ABC≌△DEF,故选项D符合题意;
故选:D.
【点睛】
本题主要考查全等三角形的判定方法,掌握全等三角形的判定方法是解题的关键,即SSS、SAS、ASA、AAS和HL.
8、B
【分析】
根据轴对称图形和中心对称图形的定义求解即可.
【详解】
解:A、是轴对称图形,但不是中心对称图形,故选项错误,不符合题意;
B、既是轴对称图形又是中心对称图形,故选项正确,符合题意;
C、不是轴对称图形,是中心对称图形,故选项错误,不符合题意;
D、是轴对称图形,但不是中心对称图形,故选项错误,不符合题意.
故选:B.
【点睛】
此题考查了轴对称图形和中心对称图形的定义,解题的关键是熟练掌握轴对称图形的定义.轴对称图形:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形.中心对称图形:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形.
9、B
【分析】
分别过点和点作轴于点,作轴于点,根据菱形的性质以及中位线的性质求得点的坐标,进而计算旋转的度数,7.5周,进而根据中心对称求得点旋转后的D坐标
【详解】
如图,分别过点和点作轴于点,作轴于点,
∴,
∵四边形为菱形,
∴点为的中点,
∴点为的中点,
∴,,
∵,
∴;
由题意知菱形绕点逆时针旋转度数为:,
∴菱形绕点逆时针旋转周,
∴点绕点逆时针旋转周,
∵,
∴旋转60秒时点的坐标为.
故选B
【点睛】
根据菱形的性质及中点的坐标公式可得点D坐标,再根据旋转的性质可得旋转后点D的坐标,熟练掌握菱形的性质及中点的坐标公式、中心对称的性质是解题的关键.
10、C
【分析】
根据一元二次方程的定义判断.
【详解】
A.含有,不是一元二次方程,不合题意;
B.整理得,-x+1=0,不是一元二次方程,不合题意;
C.x2=0是一元二次方程,故此选项符合题意;
D.当a=0时,ax2+bx+c=0,不是一元二次方程,不合题意.
故选C.
【点睛】
本题考查了一元二次方程的定义,解题时要注意两个方面:1、一元二次方程包括三点:①是整式方程,②只含有一个未知数,③所含未知数的项的最高次数是2;2、一元二次方程的一般形式是ax2+bx+c=0(a≠0).
二、填空题
1、30
【分析】
根据科学计算器的使用计算.
【详解】
解:依题意得:[3×(﹣2)3-1]÷(-)=30,
故答案为30.
【点睛】
利用科学计算器的使用规则把有理数混合运算,再计算.
2、﹣3或1
【分析】
根据这个基础,结合安全平方公式有和、差两种形式,配齐交叉项,根据恒等变形的性质,建立等式求解即可.
【详解】
解:∵二次三项式是完全平方式,
∴=或=,
∴或,
解得k=﹣3或k=1,
故答案为:﹣3或1.
【点睛】
本题考查了完全平方公式的应用,正确理解完全平方公式有和与差两种形式是解题的关键.
3、-2
【分析】
根据题意由方程|x2+px+q|=2得到x2+px+q-2=0,x2+px+q+2=0,根据判别式得到Δ1=p2-4q+8,Δ2=p2-4q-8,依此可Δ2=0,Δ1=16,可得p2-4q-8=0,依此可求q的最小值.
【详解】
解:∵|x2+px+q|=2,
∴x2+px+q-2=0①,
x2+px+q+2=0②,
∴Δ1=p2-4q+8,
Δ2=p2-4q-8,
∴Δ1>Δ2,
∵有且只有三个不同的x值满足方程|x2+px+q|=2,
∴Δ2=0,Δ1=16,
∴p2-4q-8=0,
∴q=p2-2,
当p=0时,q的最小值-2.
故答案为:-2.
【点睛】
本题考查一元二次方程的解以及根的判别式,根据题意由根的判别式得到p2-4q-8=0是解题的关键.
4、20
【分析】
根据阴影部分的面积等于两个正方形的面积之和减去空白的面积,列式化简,再把a+b=10,ab=20代入计算即可.
【详解】
解:∵大小两个正方形边长分别为a、b,
∴阴影部分的面积S=a2+b2a2(a+b)ba2b2ab;
∵a+b=10,ab=20,
∴Sa2b2ab
(a+b)2ab
10220
=20.
故答案为:20.
【点睛】
本题考查了完全平方公式的几何背景,熟练掌握完全平方公式及正方形和三角形的面积计算是解题的关键.
5、(0,-5)
【分析】
在Rt△ODC中,利用勾股定理求出OC即可解决问题.
【详解】
解:∵A(12,13),
∴OD=12,AD=13,
∵四边形ABCD是菱形,
∴CD=AD=13,
在Rt△ODC中,,
∴C(0,-5).
故答案为:(0,-5)
【点睛】
本题考查菱形的性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题.
三、解答题
1、
(1),
(2)见解析
(3)1<<<<
【分析】
(1)根据数轴直接写出A、B所表示的数即可;
(2)根据最小的正整数是1,的倒数是,然后据此在数轴上找到C、D、E即可;
(3)将A、B、C、D、E表示的数从小到大排列,再用 “<”连接即可.
(1)
解:由数轴可知A、B表示的数分别是:,.
故答案为:,.
(2)
解:∵最小的正整数是1,的倒数是
∴C表示的数是1,D表示的数是,
∴如图:数轴上的点C、D、E即为所求.
(3)
解:根据(2)的数轴可知,将点A、B、C、D、E表示的数用“<”连接如下:
1<<<<.
【点睛】
本题主要考查了在数轴上表示数、倒数、最小的正整数、倒数以及利用数轴比较有理数的大小,在数轴上正确表示有理数成为解答本题的关键.
2、
(1)x=8或x=2
(2)a=﹣5,b=1或a=4,b=10或a=﹣14,b=﹣8
【分析】
(1)根据两点间的距离公式和绝对值的意义,可得答案;
(2)分类讨论:①C是AB的中点,②当点A为线段BC的中点,③当点B为线段AC的中点,根据线段中点的性质,可得答案.
(1)
解:因为|x﹣5|=3,
所以x﹣5=3或x﹣5=﹣3,
解得x=8或x=2;
(2)
因为|a﹣b|=6(b>a),所以在数轴上,点B与点A之间的距离为6,且点B在点A的右侧.
①当点C为线段AB的中点时,
如图1所示,.
∵点C表示的数为﹣2,
∴a=﹣2﹣3=﹣5,b=﹣2+3=1.
②当点A为线段BC的中点时,
如图2所示,AC=AB=6.
∵点C表示的数为﹣2,
∴a=﹣2+6=4,b=a+6=10.
③当点B为线段AC的中点时,
如图3所示,BC=AB=6.
∵点C表示的数为﹣2,
∴b=﹣2﹣6=﹣8,a=b﹣6=﹣14.
综上,a=﹣5,b=1或a=4,b=10或a=﹣14,b=﹣8.
【点睛】
本题考查了数轴上两点间的距离,线段的中点,以及一元一次方程的应用,注意数轴上到一点距离相等的点有两个,分类讨论是解(2)题关键.
3、
(1)1辆甲型客车与1辆乙型客车的载客量分别是32,45人
(2)最节省费用的租车方案为甲型车3辆,乙型车17辆,最低费用为19400元
【分析】
(1)设1辆甲型客车与1辆乙型客车的载客量分别是人,由题意知计算求解即可.
(2)设租用甲型客车辆,乙型客车辆,由题意知,解得:,费用,可知 时费用最低,进而得出结果.
(1)
解:设1辆甲型客车与1辆乙型客车的载客量分别是人
由题意知
解得
∴1辆甲型客车与1辆乙型客车的载客量分别是人.
(2)
解:设租用甲型客车辆,乙型客车辆
由题意知
解得:
费用
费用最低时,
辆
元
∴最节省费用的租车方案为甲型车3辆,乙型车17辆,最低费用为19400元.
【点睛】
本题考查了二元一次方程组的应用,一元一次不等式的应用等知识.解题的关键在于正确的列方程和不等式.
4、
(1)-3,2,5
(2)8或-2
(3)①5;②-3.5或6.5;③2.5秒或10.5秒
【分析】
(1)根据绝对值的非负性,确定a,b的值,利用距离公式,计算即可;
(2)根据|x|=a,则x=a或x=-a,化简计算即可;
(3)①根据数轴上的两点间的距离公式,可得绝对值等于右端数减去左端的数,确定好点位置,表示的数,写出结果即可;
②根据10>5,判定P不在M,N之间,故分点P在M的右边和点P在点N的左侧,两种情形求解即可;
③设经过t秒,则点P表示的数为-5+t,则PN=|-5+t+1|=|-4+t|,PM=|-5+t-4|=|-9+t|,
故分点P在M的右边和点P在点M、点N之间,两种情形求解即可.
(1)
∵,
∴a+3=0,b-2=0,
∴a=-3,b=2,,
故答案为:-3,2,5.
(2)
∵,
∴,
∴x=8或-2;
故答案为:8或-2.
(3)
①点P在点M、N之间,且M表示4,N表示-1,动点P表示的数为x,
∴点P在定N的右侧,在点M的左侧,
∴PN=|x+1|=x+1,PM=|x-4|=4-x,
∴.
故答案为:5;
②根据10>5,判定P不在M,N之间,
当点P在M的右边时,
∴PN=|x+1|=x+1,PM=|x-4|=x-4,
∵,
∴x+1+x-4=10,
解得x=6.5;
当点P在点N的左侧时,
∴PN=|x+1|=-1-x,PM=|x-4|=4-x,
∵,
∴-1-x +4-x =10,
解得x=-3.5;
故答案为:6.5或-3.5;
③设经过t秒,则点P表示的数为-5+t,则PN=|-5+t+1|=|-4+t|,PM=|-5+t-4|=|-9+t|,
当点P在M的右边时,∴PN=|-5+t+1|=-4+t,PM=|-5+t-4|=-9+t,
∵PM+PN=8,
∴-4+t-9+t =8,
解得t=10.5;
当点P在点N、点M之间时,
∴PN=|-5+t+1|=-4+t,PM=|-5+t-4|=9-t,
∵PM+PN=8,
∴-4+t+9-t =8,
不成立;
当点P在N的左边时,
∴PN=|-5+t+1|=-1-(t-5)=4-t,PM=|-5+t-4|=4-(t-5)=9-t,
∵PM+PN=8,
∴4-t+9-t =8,
解得t=2.5;
综上所述,经过2.5秒或10.5秒时,蚂蚁所在的点到点M、点N的距离之和是8.
【点睛】
本题考查了绝对值的非负性,数轴上两点间的距离,分类思想,绝对值的化简,正确掌握绝对值化简,灵活运用分类思想是解题的关键.
5、
(1)
(2)证明见解析
【分析】
(1)先根据平行线的性质可得,再根据三角形的外角性质即可得;
(2)先根据三角形全等的判定定理证出,再根据全等三角形的性质可得,,从而可得,然后根据等腰三角形的性质、对顶角相等可得,从而可得,最后根据等腰三角形的判定即可得证.
(1)
解:∵,,
∴,
∵,
∴.
(2)
证明:∵,
∴,
∵是边的中点,
∴,
在和中,,
∴,
∴,,
∵,
∴,
∴,
∴,
∴.
【点睛】
本题考查了三角形全等的判定定理与性质、等腰三角形的判定与性质等知识点,熟练掌握各判定定理与性质是解题关键.
【难点解析】2022年邯郸永年区中考数学模拟专项测评 A卷(含详解): 这是一份【难点解析】2022年邯郸永年区中考数学模拟专项测评 A卷(含详解),共26页。试卷主要包含了若,则的值为,已知,,,则等内容,欢迎下载使用。
【真题汇总卷】2022年辽宁省大石桥市中考数学模拟测评 卷(Ⅰ)(含详解): 这是一份【真题汇总卷】2022年辽宁省大石桥市中考数学模拟测评 卷(Ⅰ)(含详解),共28页。试卷主要包含了下列命题,是真命题的是,已知,则的值为等内容,欢迎下载使用。
【真题汇总卷】2022年辽宁省大石桥市中考数学模拟考试 A卷(含答案详解): 这是一份【真题汇总卷】2022年辽宁省大石桥市中考数学模拟考试 A卷(含答案详解),共24页。试卷主要包含了已知的两个根为等内容,欢迎下载使用。