【难点解析】2022年河北省沧州市中考数学备考真题模拟测评 卷(Ⅰ)(含答案详解)
展开2022年河北省沧州市中考数学备考真题模拟测评 卷(Ⅰ)
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、若菱形的周长为8,高为2,则菱形的面积为( )
A.2 B.4 C.8 D.16
2、一列火车匀速行驶,经过一条长400米的隧道需要30秒的时间,隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是10秒,则火车的长为( )
A. B.133 C.200 D.400
3、如图,在平行四边形ABCD中,E是AD上一点,且DE=2AE,连接BE交AC于点F,已知S△AFE=1,则S△ABD的值是( )
A.9 B.10 C.12 D.14
4、下列计算正确的是( )
A. B. C. D.
5、若一个多边形截去一个角后变成了六边形,则原来多边形的边数可能是( )
A.5或6 B.6或7 C.5或6或7 D.6或7或8
6、如图,为直线上的一点,平分,,,则的度数为( )
A.20° B.18° C.60° D.80°
7、已知,,且,则的值为( )
A.1或3 B.1或﹣3 C.﹣1或﹣3 D.﹣1或3
8、二次函数 y=ax2+bx+c(a≠0)的大致图象如图所示,顶点坐标为(﹣2,﹣9a),下列结论:①4a+2b+c>0;②5a﹣b+c=0;③若关于 x 的方程ax2+bx+c=1 有两个根,则这两个根的和为﹣4;④若关于 x 的方程 a(x+5)(x﹣1)=﹣1 有两个根 x1和 x2,且 x1<x2,则﹣5<x1<x2<1.其中正确的结论有( )
A.1 个 B.2 个 C.3 个 D.4 个
9、将抛物线y=2x2向下平移3个单位后的新抛物线解析式为( )
A.y=2(x﹣3)2 B.y=2(x+3)2 C.y=2x2﹣3 D.y=2x2+3
10、火车匀速通过隧道时,火车在隧道内的长度y(米)与火车行驶时间x(秒)之间的关系用图象描述如图所示,有下列结论:①火车的速度为30米/秒;②火车的长度为120米;③火车整体都在隧道内的时间为35秒;④隧道长度为1200米.其中正确的结论是( )
A.①②③ B.①②④ C.③④ D.①③④
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、最新人口普查数据显示上海的常住人数约为24870000人,将24870000用科学记数法表示是:_______.
2、等腰三角形ABC中,项角A为50°,点D在以点A为圆心,BC的长为半径的圆上,若BD=BA,则∠DBC的度数为_____.
3、已知射线,在射线上截取OC=10cm,在射线上截取CD=6cm,如果点、点分别是线段、的中点,那么线段的长等于_______cm.
4、桌子上放有6枚正面朝上的硬币,每次翻转其中的4枚,至少翻转_________次能使所有硬币都反面朝上.
5、已知是二元一次方程的一个解,那么_______.
三、解答题(5小题,每小题10分,共计50分)
1、如图,在△ABC中,已知D是BC边的中点,过点D的直线GF交AC于F,交AC的平行线BG于点G,DE⊥GF,交AC的延长线于点E,联结EG.
(1)说明BG与CF相等的理由.
(2)说明∠BGD与∠DGE相等的理由.
2、为了解班级学生参加课后服务的学习效果,何老师对本班部分学生进行了为期一个月的跟踪调查,他将调查结果分为四类:A:很好;B:较好;C:一般;D:不达标,并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:
(1)此次调查的总人数为________;
(2)扇形统计图中“不达标”对应的圆心角度数是________°;
(3)请将条形统计图补充完整;
(4)为了共同进步,何老师准备从被调查的A类和D类学生中各随机抽取一位同学进行“一帮一”互助学习.请用画树状图或列表的方法求出所选两位同学恰好是相同性别的概率.
3、如图,射线、、、分别表示从点出发的向北、东、南、西四个方向,将直角三角尺的直角顶点与点重合.
(1)图中与互余的角是_______;
(2)①用直尺和圆规作的平分线;(不写作法,保留作图痕迹)
②在①所做的图形中,如果,那么点在点的_______方向.
4、如图1,点A、O、B依次在直线MN上,如图2,现将射线OA绕点O沿顺时针方向以每秒4°的速度旋转,同时射线OB绕点O沿逆时针方向以每秒6°的速度旋转,当其中一条射线回到起始位置时,运动停止,直线MN保持不动,设旋转时间为ts.
(1)当t=3时,∠AOB= ;
(2)在运动过程中,当射线OB与射线OA垂直时,求t的值;
(3)在旋转过程中,是否存在这样的t,使得射线OB、射线OA和射线OM,其中一条射线把另外两条射线的夹角(小于180°)分成2:3的两部分?如果存在,直接写出答案;如果不存在,请说明理由.
5、如图,抛物线y=x2+bx+c(a≠0)与x轴交于4B两点,且点B的坐标为(2,0),与y轴交于点C,抛物线的对称轴为直线x=﹣1,点D为抛物线的顶点,连接AD,AC.
(1)求抛物线的解析式;
(2)如图1,点P是抛物线上第三象限内的一个动点,过点P作PM∥x轴交AC于点M,求PM的最大值及此时点P的坐标;
(3)如图2,将原抛物线向右平移,使得点A刚好落在原点O,M是平移后的抛物线上一动点,Q是直线AC上一动点,直接写出使得由点C,B,M,Q组成的四边形是平行四边形的点Q的坐标;并把求其中一个点Q的坐标的过程写出来.
-参考答案-
一、单选题
1、B
【分析】
根据周长求出边长,利用菱形的面积公式即可求解.
【详解】
∵菱形的周长为8,
∴边长=2,
∴菱形的面积=2×2=4,
故选:B.
【点睛】
此题考查菱形的性质,熟练掌握菱形的面积=底×高是解题的关键.
2、C
【分析】
设火车的车长是x米,根据经过一条长400m的隧道需要30秒的时间,可求火车速度,隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是10秒,可求火车上速度,根据车速相同可列方程求解即可.
【详解】
解:设火车的长度是x米,根据题意得出:=,
解得:x=200,
答:火车的长为200米;
故选择C.
【点睛】
本题考查了一元一次方程的应用,解答本题的关键是读懂题意,设出未知数,找出等量关系,列方程求解.
3、C
【分析】
过点F作MN⊥AD于点M,交BC于点N,证明△AFE∽△CFB,可证得,得MN=4MF,再根据三角形面积公式可得结论.
【详解】
解:过点F作MN⊥AD于点M,交BC于点N,连接BD,
∵四边形ABCD是平行四边形,
∴AD//BC,AD=BC
∴△AFE∽△CFB
∴
∵DE=2AE
∴AD=3AE=BC
∴
∴,即
又
∴
∴
故选:C
【点睛】
本题主要考查了平行四边形的性质,相似三角形的判定与性质,解答此题的关键是能求出两三角形的高的数量关系.
4、D
【分析】
直接根据合并同类项运算法则进行计算后再判断即可.
【详解】
解:A. ,选项A计算错误,不符合题意;
B. ,选项B计算错误,不符合题意;
C. ,选项C计算错误,不符合题意;
D. ,计算正确,符合题意
故选:D
【点睛】
本题主要考查了合并同类项,熟练掌握合并同类项法则是解答本题的关键.
5、C
【分析】
实际画图,动手操作一下,可知六边形可以是五边形、六边形、七边形截去一个角后得到.
【详解】
解:如图,原来多边形的边数可能是5,6,7.
故选C
【点睛】
本题考查的是截去一个多边形的一个角,解此类问题的关键是要从多方面考虑,注意不能漏掉其中的任何一种情况.
6、A
【分析】
根据角平分线的定义得到,从而得到,再根据可得,即可求出结果.
【详解】
解:∵OC平分,
∴,
∴,
∵,
∴,
∴,
故选:A.
【点睛】
本题主要考查角的计算的知识点,运用好角的平分线这一知识点是解答的关键.
7、A
【分析】
由题意利用乘方和绝对值求出x与y的值,即可求出x-y的值.
【详解】
解:∵,,
,
∴x=1,y=-2,此时x-y=3;
x=-1,y=-2,此时x-y=1.
故选:A.
【点睛】
此题考查了有理数的乘方,绝对值,以及有理数的减法,熟练掌握运算法则是解本题的关键.
8、C
【分析】
求解的数量关系;将代入①式中求解判断正误;②将代入,合并同类项判断正负即可;③中方程的根关于对称轴对称,求解判断正误;④中求出二次函数与轴的交点坐标,然后观察方程的解的取值即可判断正误.
【详解】
解:由顶点坐标知
解得
∵
∴当时,,故①正确,符合题意;
,故②错误,不符合题意;
方程的根为的图象与直线的交点的横坐标,即关于直线对称,故有,即,故③正确,符合题意;
,与轴的交点坐标为,方程的根为二次函数图象与直线的交点的横坐标,故可知,故④正确,符合题意;
故选C.
【点睛】
本题考查了二次函数的图象与性质,二次函数与二次方程等知识.解题的关键与难点在于从图象中提取信息,并且熟练掌握二次函数与二次方程的关系.
9、C
【分析】
根据“上加下减”的原则进行解答即可.
【详解】
解:将抛物线y=2x2向下平移3个单位后的新抛物线解析式为:y=2x2-3.
故选:C.
【点睛】
本题考查的是二次函数的图象与几何变换,熟知函数图象平移的规律是解答此题的关键.
10、D
【分析】
根据函数的图象即可确定在BC段,所用的时间是5秒,路程是150米,则速度是30米/秒,进而即可确定其它答案.
【详解】
解:在BC段,所用的时间是5秒,路程是150米,则速度是30米/秒.故①正确;
火车的长度是150米,故②错误;
整个火车都在隧道内的时间是:45-5-5=35秒,故③正确;
隧道长是:45×30-150=1200(米),故④正确.
故选:D.
【点睛】
本题主要考查了用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.
二、填空题
1、
【分析】
绝对值大于1的数可以用科学记数法表示,一般形式为a×10n, 为正整数,且比原数的整数位数少1,据此可以解答.
【详解】
解:.
故答案是:.
【点睛】
本题考查用科学记数法表示较大的数,熟练掌握一般形式为 ,其中, 是正整数,解题的关键是确定 和 的值.
2、15°或115°
【分析】
根据题意作出图形,根据等腰三角形的性质和三角形的内角和定理求得,,根据即可求得∠DBC的度数
【详解】
解:如图,等腰三角形ABC中,顶角为50°,点D在以点A为圆心,BC的长为半径的圆上,
,
BD=BA,
又
当在位置时,同理可得
故答案为:15°或115°
【点睛】
本题考查了圆的性质,三角形全等的性质与判定,三角形内角和定理,等腰三角形的定义,根据题意画出图形是解题的关键.
3、2
【分析】
根据OC、CD和中点A、B求出AC和BC,利用AB=AC-BC即可.
【详解】
解:如图所示,
,,
点、点分别是线段、的中点,
,,
.
故答案为:2.
【点睛】
本题考查线段的和差计算,以及线段的中点,能准确画出对应的图形是解题的关键.
4、3
【分析】
用“”表示正面朝上,用“”表示正面朝下,找出最少翻转次数能使杯口全部朝下的情况即可得答案
【详解】
用“”表示正面朝上,用“”表示正面朝下,
开始时
第一次
第二次
第三次
至少翻转3次能使所有硬币都反面朝上.
故答案为:3
【点睛】
本题考查了正负数的应用,根据朝上和朝下的两种状态对应正负号,尝试最少的次数满足题意是解题的关键.
5、##
【分析】
把代入,即可求出a的值.
【详解】
解:由题意可得:,
,
解得:,
故答案为:.
【点睛】
本题考查了求二元一次方程的解,能使二元一次方程左右两边相等的未知数的值叫做二元一次方程的解.
三、解答题
1、
(1)见祥解
(2)见祥解
【分析】
(1)求出BD=DC,∠GBD=∠DCF,证出△BDG≌△CDF即可;
(2)根据线段垂直平分线性质得出EF=EG,求出∠DFE=∠DGE,∠DFE=∠BGD,即可得出答案.
(1)
解 ∵D为BC中点,
∴BD=DC(中点的定义),
∵BG∥FC(已知),
∴∠GBD=∠DCF(两直线平行,内错角相等),
在△BDG和△CDF中,
,
∴△BDG≌△CDF(ASA),
∴BG=CF(全等三角形对应边相等);
(2)
解:∵D是BC边的中点,DE⊥GF,即DE为线段GF的中垂线,
∴EF=EG,
∴∠DFE=∠DGE(等边对等角),)
∵∠DFE=∠BGD(全等三角形对应角相等),
∴∠BGD=∠DGE(等量代换).
【点睛】
本题考查全等三角形的判定与性质,线段垂直平分线的性质.解答本题的关键是明确题意,找出所求问题需要的条件,证明三角形全等.
2、
(1)20人
(2)36
(3)见解析
(4)
【分析】
(1)由条形统计图中B类学生数及扇形统计图中B类学生的百分比即可求得参与调查的总人数;
(2)由扇形统计图可求得不达标的学生所占的百分比,它与360°的积即为所求的结果;
(3)现两种统计图及(1)中所求得的总人数,可分别求得C类、D类学生的人数,从而可求得这两类中未知的学生数,从而可补充完整条形统计图;
(4)记A类学生中的男生为“男1”,两个女生分别记为“女1”、“女2”,记D类学生的一男一女分别为“男”、“女”,列表即可求得所有可能的结果数及所选两位同学恰好是相同性别的结果数,从而可求得概率.
(1)
由条形统计图知,B类学生共有6+4=10(人),由扇形统计图知,B类学生所占的百分比为50%,则参与调查的总人数为:(人)
故答案为:20人
(2)
由扇形统计图知,D类学生所占的百分比为:,则扇形统计图中“不达标”对应的圆心角度数是:360°×10%=36°
故答案为:36
(3)
C类学生总人数为:20×25%=5(人),则C类学生中女生人数为:(人)
D类学生总人数为:20×10%=2(人),则C类学生中男生人数为:(人)
补充完整的条形统计图如下:
(4)
记A类学生中的男生为“男1”,两个女生分别记为“女1”、“女2”,记D类学生的一男一女分别为“男”、“女”,列表如下:
| 男1 | 女1 | 女2 |
男 | 男男1 | 男女1 | 男女2 |
女 | 女男1 | 女女1 | 女女2 |
则选取两位同学的所有可能结果数为6种,所选两位同学恰好是相同性别的结果数有3种,所以所选两位同学恰好是相同性别的概率为:
【点睛】
本题是统计图的综合,考查了条形统计图与扇形统计图,简单事件的概率,关键是读懂两个统计图并能从图中获取信息.
3、
(1)、
(2)①作图见解析;②北偏东或东偏北
【分析】
(1)由题可知,故可知与互余的角;
(2)①如图所示,以O为圆心画弧,分别与OE、OA相交;以两交点为圆心,大于两点长度的一半为半径画弧,连接两弧交点与O点的射线即为角平分线;②,,进而得出P与O有关的位置.
(1)
解:图中与互余的角是和;
故答案为:、.
(2)
①如图,为所作;
②,
,
平分,
,
,
即点在点的北偏东方向或东偏北
故答案为:北偏东或东偏北.
【点睛】
本题考查了余角,角平分线以及坐标系中的位置.解题的关键在于正确的求解角度.
4、
(1)150°
(2)9或27或45;
(3)t为、、、、
【分析】
(1)求出∠AOM及∠BON的度数可得答案;
(2)分两种情况:①当时,②当时,根据OA与OB重合前,OA与OB重合后,列方程求解;
(3)射线OB、射线OM、射线OA中,其中一条射线把另外两条射线的夹角(小于180°)分成2:3的两部分有以下九种情况:
①OA分∠BOM为2:3时,②OA分∠BOM为3:2时,③OB分∠AOM为2:3时,④OB分∠AOM为3:2时,⑤OM分∠AOB为2:3时,⑥ OB分∠AOM为2:3时,⑦OB分∠AOM为3:2时,⑧ OA分∠BOM为3:2时,⑨ OA分∠BOM为2:3时,列方程求解并讨论是否符合题意.
(1)
解:当t=3时,∠AOM=12°,∠BON=18°,
∴∠AOB=180°-∠AOM-∠BON=150°,
故答案为:150°;
(2)
解:分两种情况:
①当时,
当OA与OB重合前,,得t=9;
当OA与OB重合后,,得t=27;
②当时,
当OA与OB重合前,,得t=45;
当OA与OB重合后,,得t=63(舍去);
故t的值为9或27或45;
(3)
解:射线OB、射线OM、射线OA中,其中一条射线把另外两条射线的夹角(小于180°)分成2:3的两部分有以下九种情况:
①OA分∠BOM为2:3时,
∴4t:(180-4t-6t)=2:3,
解得:t=;
②OA分∠BOM为3:2时,
∴4t:(180-4t-6t)=3:2,
解得:t=;
③OB分∠AOM为2:3时,
∵,
∴,
得t=;
④OB分∠AOM为3:2时,
∴,
得t=;
⑤OM分∠AOB为2:3时,
∴,
得t=54,
此时>180°,故舍去;
⑥ OB分∠AOM为2:3时,
∴,
得,
此时,故舍去;
⑦OB分∠AOM为3:2时,
∴,
得,
此时,故舍去;
⑧ OA分∠BOM为3:2时,
∴,
得,
⑨ OA分∠BOM为2:3时,
∴,
得t=67.5(舍去)
综上,当t的值分别为、、、、时,射线OB、射线OM、射线OA中,其中一条射线把另外两条射线的夹角(小于180°)分成2:3的两部分.
【点睛】
此题考查了角的计算,角的旋转,几何图形中角度的度数比,列一元一次方程,正确画出图形求角度值是解题的关键.
5、
(1)
(2)最大值为2,
(3),或,
【分析】
(1)用待定系数法即可得抛物线的解析式为;
(2)由,得直线解析式为,设,,可得,即得时,的值最大,最大值为2,;
(3)由已知得平移后的抛物线解析式为,设,,而,,①以、为对角线,则的中点即是的中点,即,解得,或,;②以、为对角线,得,方程组无解;③以、为对角线,,解得,或,.
(1)
解:点的坐标为在抛物线,抛物线的对称轴为直线,
,解得,
抛物线的解析式为;
(2)
在中,令得或,
,
在中,令得,
,
设直线解析式为,则,
解得,
直线解析式为,
设,,
由得,
,,
,
,
时,的值最大,最大值为2;
此时;
(3)
将原抛物线向右平移,使得点刚好落在原点,
平移后的抛物线解析式为,
设,,而,,
①以、为对角线,则的中点即是的中点,
,解得,
,或,;
②以、为对角线,
,方程组无解;
③以、为对角线,
,解得,
,或,;
综上所述,,或,.
【点睛】
本题考查二次函数综合应用,涉及待定系数法、平行四边形等知识,解题的关键是用含字母的代数式表示相关点的坐标和相关线段的长度
备考练习河北省保定市中考数学备考真题模拟测评 卷(Ⅰ)(含答案详解): 这是一份备考练习河北省保定市中考数学备考真题模拟测评 卷(Ⅰ)(含答案详解),共25页。试卷主要包含了下列方程中,解为的方程是,不等式的最小整数解是等内容,欢迎下载使用。
【难点解析】湖南省常德市中考数学备考真题模拟测评 卷(Ⅰ)(含答案详解): 这是一份【难点解析】湖南省常德市中考数学备考真题模拟测评 卷(Ⅰ)(含答案详解),共26页。试卷主要包含了下列方程中,解为的方程是,利用如图①所示的长为a等内容,欢迎下载使用。
【难点解析】河北省保定市中考数学真题模拟测评 (A)卷(含详解): 这是一份【难点解析】河北省保定市中考数学真题模拟测评 (A)卷(含详解),共29页。试卷主要包含了下列现象,如图,有三块菜地△ACD,如图,E等内容,欢迎下载使用。