【难点解析】2022年北京市平谷区中考数学模拟考试 A卷(含答案解析)
展开2022年北京市平谷区中考数学模拟考试 A卷
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、若菱形的周长为8,高为2,则菱形的面积为( )
A.2 B.4 C.8 D.16
2、若关于x的不等式组有且仅有3个整数解,且关于y的方程的解为负整数,则符合条件的整数a的个数为( )
A.1个 B.2个 C.3个 D.4个
3、有依次排列的3个数:2,9,7,对任意相邻的两个数,都用右边的数减去左边的数,所得之差写在这两个数之间,可产生一个新数串:2,7,9,-2,7,这称为第1次操作;做第2次同样的操作后也可产生一个新数串:2,5,7,2,9,-11,-2,9,7,继续操作下去,从数串2,9,7开始操作第2022以后所产生的那个新数串的所有数之和是( )
A.20228 B.10128 C.5018 D.2509
4、若,,且a,b同号,则的值为( )
A.4 B.-4 C.2或-2 D.4或-4
5、为保护人民群众生命安全,减少交通事故,自2020年7月1日起,我市市民骑车出行必须严格遵守“一盔一带”规定,某头盔经销商经过统计发现:某品牌头盔从5月份到7月份销售量的月增长率相同,若5月份销售200个,7月份销售288个,设月增长率为x则可列出方程( )
A.200(+x)=288 B.200(1+2x)=288
C.200(1+x)²=288 D.200(1+x²)=288
6、点P(4,﹣3)关于原点对称的点的坐标是( )
A.(3,﹣4) B.(﹣4,3) C.(﹣4,﹣3) D.(4,3)
7、将抛物线y=2x2向下平移3个单位后的新抛物线解析式为( )
A.y=2(x﹣3)2 B.y=2(x+3)2 C.y=2x2﹣3 D.y=2x2+3
8、一列火车匀速行驶,经过一条长400米的隧道需要30秒的时间,隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是10秒,则火车的长为( )
A. B.133 C.200 D.400
9、有理数a,b在数轴上的对应点的位置如图所示,则正确的结论是( )
A. B. C. D.
10、一个圆形人工湖如图所示,弦AB是湖上的一座桥,已知桥AB长100m,测得圆周角,则这个人工湖的直径AD为( )m.
A. B. C. D.200
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、小华为学校“赓续百年初心,庆祝建党百年”活动布置会场,在—个不透明的口袋里有4根除颜色以外完全相同的缎带,其中2根为红色,2根为黄色,从口袋中随机摸出根缎带,则恰好摸出1根红色缎带1根黄色缎带的概率是______.
2、已知点 P (m + 2, 3)和点 Q (2, n - 4)关于原点对称,则 m + n =_____.
3、如图,点、点是线段上的两个点,且,如果AB=5cm,CD=1cm,那么的长等于_______cm.
4、比较大小:-7______-8(填入>”或“<”号)..
5、如图,矩形ABCD中,AC的垂直平分线MN与AB交于点E,连接CE.若∠CAD=70°,则∠DCE=_____°.
三、解答题(5小题,每小题10分,共计50分)
1、如图,一次函数的图象与反比例函数的图象相交于A(1,3),B(3,n)两点,与两坐标轴分别相交于点P,Q,过点B作于点C,连接OA.
(1)求一次函数和反比例函数的解析式;
(2)求四边形ABCO的面积.
2、如图①,某校进行校园改造,准备将一块正方形空地划出部分区域栽种鲜花,原空地一边减少了4m,另一边减少了5m,剩余部分面积为650m2.
(1)求原正方形空地的边长;
(2)在实际建造时,从校园美观和实用的角度考虑,按图②的方式进行改造,先在正方形空地一侧建成1m宽的画廊,再在余下地方建成宽度相等的两条小道后,其余地方栽种鲜花,如果栽种鲜花区域的面积为812m2,求小道的宽度.
3、如图,点C是线段AB是一点,AC:BC=1:3点D是BC的中点,若线段AC=4.
(1)图中共有 条线段;
(2)求线段AD的长.
4、已知:如图,E,F是线段BC上两点,ABCD,BE=CF,∠A=∠D.求证:AF=DE.
5、已知:如图,E为△ABC的外角平分线上的一点,AE∥BC,,求证:
(1)△ABC是等腰三角形;
(2).
-参考答案-
一、单选题
1、B
【分析】
根据周长求出边长,利用菱形的面积公式即可求解.
【详解】
∵菱形的周长为8,
∴边长=2,
∴菱形的面积=2×2=4,
故选:B.
【点睛】
此题考查菱形的性质,熟练掌握菱形的面积=底×高是解题的关键.
2、C
【分析】
解不等式组得到,利用不等式组有且仅有3个整数解得到,再解分式方程得到,根据解为负整数,得到a的取值,再取共同部分即可.
【详解】
解:解不等式组得:,
∵不等式组有且仅有3个整数解,
∴,
解得:,
解方程得:,
∵方程的解为负整数,
∴,
∴,
∴a的值为:-13、-11、-9、-7、-5、-3,…,
∴符合条件的整数a为:-13,-11,-9,共3个,
故选C.
【点睛】
本题考查了分式方程的解:求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解.也考查了解一元一次不等式组的整数解.
3、B
【分析】
根据题意分别求得第一次操作,第二次操作所增加的数,可发现是定值5,从而求得第101次操作后所有数之和为2+7+9+2022×5=10128.
【详解】
解:∵第一次操作增加数字:-2,7,
第二次操作增加数字:5,2,-11,9,
∴第一次操作增加7-2=5,
第二次操作增加5+2-11+9=5,
即,每次操作加5,第2022次操作后所有数之和为2+7+9+2022×5=10128.
故选:B.
【点睛】
此题主要考查了数字变化类,关键是找出规律,要求要有一定的解题技巧,解题的关键是能找到所增加的数是定值5.
4、D
【分析】
根据绝对值的定义求出a,b的值,根据a,b同号,分两种情况分别计算即可.
【详解】
解:∵|a|=3,|b|=1,
∴a=±3,b=±1,
∵a,b同号,
∴当a=3,b=1时,a+b=4;
当a=-3,b=-1时,a+b=-4;
故选:D.
【点睛】
本题考查了绝对值,有理数的加法,考查分类讨论的数学思想,知道a,b同号分两种:a,b都是正数或都是负数是解题的关键.
5、C
【分析】
设月增长率为x,根据等量关系用增长率表示7月份的销售量与销售288相等,可列出方程200(1+x)²=288即可.
【详解】
解:设月增长率为x,则可列出方程200(1+x)²=288.
故选C.
【点睛】
本题考查列一元二次方程解增长率问题应用题,掌握列一元二次方程解增长率问题应用题方法与步骤,抓住等量关系列方程是解题关键.
6、B
【分析】
根据关于原点对称的点,横坐标与纵坐标都互为相反数,进而得出答案.
【详解】
解:点P(4,-3)关于原点对称的点的坐标是(-4,3),
故选:B.
【点睛】
此题主要考查了关于原点对称点的性质,解决本题的关键是掌握好对称点的坐标规律:关于原点对称的点,横坐标与纵坐标都互为相反数.
7、C
【分析】
根据“上加下减”的原则进行解答即可.
【详解】
解:将抛物线y=2x2向下平移3个单位后的新抛物线解析式为:y=2x2-3.
故选:C.
【点睛】
本题考查的是二次函数的图象与几何变换,熟知函数图象平移的规律是解答此题的关键.
8、C
【分析】
设火车的车长是x米,根据经过一条长400m的隧道需要30秒的时间,可求火车速度,隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是10秒,可求火车上速度,根据车速相同可列方程求解即可.
【详解】
解:设火车的长度是x米,根据题意得出:=,
解得:x=200,
答:火车的长为200米;
故选择C.
【点睛】
本题考查了一元一次方程的应用,解答本题的关键是读懂题意,设出未知数,找出等量关系,列方程求解.
9、C
【分析】
由数轴可得: 再逐一判断的符号即可.
【详解】
解:由数轴可得:
故A,B,D不符合题意,C符合题意;
故选C
【点睛】
本题考查的是利用数轴比较有理数的大小,绝对值的含义,有理数的加法,减法,乘法的结果的符号确定,掌握以上基础知识是解本题的关键.
10、B
【分析】
连接BD,利用同弧所对圆周角相等以及直径所对的角为直角,求证为等腰直角三角形,最后利用勾股定理,求出AD即可.
【详解】
解:连接BD,如下图所示:
与所对的弧都是.
.
所对的弦为直径AD,
.
又,
为等腰直角三角形,
在中,,
由勾股定理可得:.
故选:B.
【点睛】
本题主要是考查了圆周角定理以及直径所对的圆周角为直角和勾股定理,熟练运用圆周角定理以及直径所对的圆周角为直角,得到对应的直角三角形,再用勾股定理求解边长,是解决本题的主要思路.
二、填空题
1、
【分析】
画树状图共有12种等可能的结果,其中摸出1根红色缎带1根黄色缎带的结果数为8,再由概率公式即可求解
【详解】
解:根据题意画出树状图,得:
共有12种等可能的结果,其中摸出1根红色缎带1根黄色缎带的结果数为8,
所以摸出1根红色缎带1根黄色缎带的概率=.
【点睛】
本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率是解题的关键.
2、-3
【分析】
求解的值,然后代入求解即可.
【详解】
解:由题意知
解得
∴
故答案为:.
【点睛】
本题考查了关于原点对称的点坐标的特征.解题的关键在于明确关于原点对称的点坐标的横、纵坐标均互为相反数.
3、2
【分析】
,可知,代值求解即可.
【详解】
解:
,
故答案为:2.
【点睛】
本题考查了线段的和与差.解题的关键在于正确的表示各线段之间的数量关系.
4、
【分析】
根据两个负数比较大小,其绝对值大的反而小比较即可.
【详解】
解:,,
,
,
故答案为:.
【点睛】
本题考查了绝对值和有理数的大小比较,解题的关键是能熟记有理数的大小比较法则的内容,注意:两个负数比较大小,其绝对值大的反而小.
5、40
【分析】
根据线段垂直平分线的性质得到EC=EA,根据矩形的性质得到∠DCA=∠EAC=20°,结合图形计算,得到答案.
【详解】
解:∵MN是AC的垂直平分线,
∴EC=EA,
∴∠ECA=∠EAC,
∵四边形ABCD是矩形,
∴AB∥CD,∠D=90°,
∴∠DCA=∠EAC=90°-70°=20°,
∴∠DCE=∠DCA+∠ECA=20°+20°=40°,
故答案为:40.
【点睛】
本题考查的是矩形的性质,线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.
三、解答题
1、(1)一次函数的关系式为y=-x+4,反比例函数的关系式为y=;(2)四边形ABCO的面积为.
【分析】
(1)将点A坐标代入,确定反比例函数的关系式,进而确定点B坐标,把点A、B的坐标代入求出一次函数的关系式;
(2)将四边形ABCO的面积转化为S△AOM+S梯形AMCB,利用坐标及面积的计算公式可求出结果.
【详解】
解:(1)A(1,3)代入y=得,m=3,
∴反比例函数的关系式为y=;
把B(3,n)代入y=得,n=1,
∴点B(3,1);
把点A(1,3),B(3,1)代入一次函数y=kx+b得,
,
解得:,
∴一次函数的关系式为:y=-x+4;
答:一次函数的关系式为y=-x+4,反比例函数的关系式为y=;
(2)如图,过点B作BM⊥OP,垂足为M,
由题意可知,OM=1,AM=3,OC=3,MC=OC-OM=3-1=2,
∴S四边形ABCO=S△AOM+S梯形AMCB,
=×1×3+×(1+3)×2
=.
【点睛】
本题考查了一次函数、反比例函数的图象和性质,把点的坐标代入是常用的方法,将坐标与线段的长的相互转化是计算面积的关键.
2、
(1)30m
(2)1m
【分析】
(1)设原正方形空地的边长为x m,则剩余部分长(x-4)m,宽(x-5)m,根据剩余部分面积为650m2,即可得出关于x的一元二次方程,解之取其正值即可得出结论;
(2)设小道的宽度为y m,则栽种鲜花的区域可合成长(30-y)m,宽(30-1-y)m的矩形,根据栽种鲜花区域的面积为812m2,即可得出关于y的一元二次方程,解之取其符合题意的值即可得出结论.
【小题1】
解:设原正方形空地的边长为x m,则剩余部分长(x-4)m,宽(x-5)m,
依题意得:(x-4)(x-5)=650,
整理得:x2-9x-630=0,
解得:x1=30,x2=-21(不合题意,舍去).
答:原正方形空地的边长为30m.
【小题2】
设小道的宽度为y m,则栽种鲜花的区域可合成长(30-y)m,宽(30-1-y)m的矩形,
依题意得:(30-y)(30-1-y)=812,
整理得:y2-59y+58=0,
解得:y1=1,y2=58(不合题意,舍去).
答:小道的宽度为1m.
【点睛】
本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.
3、6
【分析】
(1)根据图形写出所有线段即可;
(2)首先求出BC=12,再求出CD=6,从而根据AC+CB=AD可求出结论.
【详解】
解:(1)(1)图中有AC、AD、AB、CD、CB、DB共6条线段;
故答案为:6;
(2)∵AC:BC=1:3,AC=4
∴
∵点D是BC的中点,
∴
∴
【点睛】
本题考查的是两点间的距离的计算,掌握线段中点的性质、灵活运用数形结合思想是解题的关键.
4、见解析
【分析】
欲证明AF=DE,只要证明△ABF≌△DCE即可;
【详解】
证明:∵BE=CF,
∴BF=CE,
∵ABCD,
∴∠B=∠C,
在△ABF和△DCE,,
∴△ABF≌△DCE,
∴AF=DE.
【点睛】
本题考查全等三角形的判定和性质、平行线的性质等知识,解题的关键是正确寻找全等三角形全等的条件,属于中考常考题型.
5、
(1)见解析
(2)见解析
【分析】
(1)由AE//BC可得,由AE平分得,从而,故可得结论;
(2)根据SAS证明即可证明AF=CE.
(1)
∵AE//BC
∴
∵AE平分
∴
∴
∴,即△ABC是等腰三角形;
(2)
由(1)可得,
∵
∴
∴.
【点睛】
本题主要考查了等腰三角形的判定,全等三角形的判断与性质,能判断出等角对等边是解答本题的关键.
【难点解析】2022年北京市平谷区中考数学三年真题模拟 卷(Ⅱ)(含答案详解): 这是一份【难点解析】2022年北京市平谷区中考数学三年真题模拟 卷(Ⅱ)(含答案详解),共22页。试卷主要包含了若,则的值是,下列计算错误的是,如图,点C等内容,欢迎下载使用。
【难点解析】2022年北京市石景山区中考数学模拟考试 A卷(含答案及解析): 这是一份【难点解析】2022年北京市石景山区中考数学模拟考试 A卷(含答案及解析),共27页。试卷主要包含了若,则的值是等内容,欢迎下载使用。
【难点解析】2022年北京市平谷区中考数学模拟真题练习 卷(Ⅱ)(含答案详解): 这是一份【难点解析】2022年北京市平谷区中考数学模拟真题练习 卷(Ⅱ)(含答案详解),共19页。试卷主要包含了下列命题正确的是,下列计算正确的是,点P,已知和是同类项,那么的值是等内容,欢迎下载使用。