【高频真题解析】2022年中考数学真题模拟测评 (A)卷(精选)
展开2022年中考数学真题模拟测评 (A)卷
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、若,则的值为( )
A. B.8 C. D.
2、在数2,-2,,中,最小的数为( )
A.-2 B. C. D.2
3、在2,1,0,-1这四个数中,比0小的数是( )
A.2 B.0 C.1 D.-1
4、育种小组对某品种小麦发芽情况进行测试,在测试条件相同的情况下,得到如下数据:
抽查小麦粒数 | 100 | 300 | 800 | 1000 | 2000 | 3000 |
发芽粒数 | 96 | 287 | 770 | 958 | 1923 | a |
则a的值最有可能是( )
A.2700 B.2780 C.2880 D.2940
5、已知线段AB=7,点C为直线AB上一点,且AC∶BC=4∶3,点D为线段AC的中点,则线段BD的长为( )
A.5或18.5 B.5.5或7 C.5或7 D.5.5或18.5
6、已知,则代数式的值是( )
A.﹣3 B.3 C.9 D.18
7、一个不透明的盒子里装有a个除颜色外完全相同的球,其中有6个白球,每次将球充分搅匀后,任意摸出1个球记下颜色然后再放回盒子里,通过如此大量重复试验,发现摸到白球的频率稳定在0.4左右,则a的值约为( )
A.10 B.12 C.15 D.18
8、如果与的差是单项式,那么、的值是( )
A., B., C., D.,
9、如图,点A的坐标为,点B是x轴正半轴上的动点,以AB为腰作等腰直角,使,设点B的横坐标为x,设点C的纵坐标为y,能表示y与x的函数关系的图象大致是( )
A. B.
C. D.
10、的相反数是( )
A. B. C. D.3
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、在同一平面上,外有一点P到圆上的最大距离是8cm,最小距离为2cm,则的半径为______cm.
2、把有理数a代入得到,称为第一次操作,再将作为a的值代入得到,称为第二次操作,依此类推……,若,则经过第2022次操作后得到的是______.
3、背面完全相同的四张卡片,正面分别写着数字-4,-1,2,3,背面朝上并洗匀,从中随机抽取一张,将卡片上的数字记为,再从余下的卡片中随机抽取一张,将卡片上的数字记为,则点在第四象限的概率为__________.
4、如果关于x的方程x2﹣x+2a=4有一个根是x=﹣1,那么a=___.
5、方程无解,那么的值为________.
三、解答题(5小题,每小题10分,共计50分)
1、用适当的方法解下列方程:
(1);
(2).
2、解方程:x2﹣4x﹣9996=0.
3、定义一种新运算“”,规定:等式右边的运算就是加、减、乘、除四则运算,例如:,.
(1)求的值;
(2)若,求x的值.
4、上海迪士尼乐园调查了部分游客前往乐园的交通方式,并绘制了如下统计图.已知选择“自驾”方式的人数是调查总人数的,选择“其它”方式的人数是选择“自驾”人数的,根据图中提供的信息,回答下列问题:
(1)本次调查的总人数是多少人?
(2)选择“公交”方式的人数占调查总人数的几分之几?
5、已知,,点在边上,点是边上一动点,.以线段为边在上方作等边,连接、,再以线段为边作等边(点、在的同侧),作于点.
(1)如图1,.①依题意补全图形;②求的度数;
(2)如图2,当点在射线上运动时,用等式表示线段与之间的数量关系,并证明.
-参考答案-
一、单选题
1、D
【分析】
根据多项式乘以多项式展开,根据多项式相等即可求得对应字母的值,进而代入代数式求解即可.
【详解】
解:,
,
,,
,,
解得:,,
.
故选:D.
【点睛】
本题考查了多项式乘以多项式,负整数指数幂,掌握以上知识是解题的关键.
2、A
【分析】
根据正数大于0,负数小于0,正数大于一切负数,两个负数,绝对值大的反而小比较即可.
【详解】
解:∵,,
∴-2<<<2,
故选A.
【点睛】
本题考查了有理数的大小比较,熟练掌握有理数大小比较的方法是解答本题的关键.
3、D
【分析】
根据正数大于零,零大于负数,即可求解.
【详解】
解:在2,1,0,-1这四个数中,比0小的数是-1
故选:D
【点睛】
本题主要考查了有理数的大小比较,熟练掌握正数大于零,零大于负数是解题的关键.
4、C
【分析】
计算每组小麦的发芽率,根据结果计算.
【详解】
解:∵
∴=2880,
故选:C.
【点睛】
此题考查了数据的频率估计概率,正确掌握频率公式计算频率是解题的关键.
5、C
【分析】
根据题意画出图形,再分点C在线段AB上或线段AB的延长线上两种情况进行讨论.
【详解】
解:点C在线段AB上时,如图:
∵AB=7,AC∶BC=4∶3,
∴AC=4,BC=3,
∵点D为线段AC的中点,
∴AD=DC=2,
∴BD=DC+BC=5;
点C在线段AB的延长线上时,
∵AB=7,AC∶BC=4∶3,
设BC=3x,则AC=4x,
∴AC-BC=AB,即4x-3x=7,
解得x=7,
∴BC=21,则AC=28,
∵点D为线段AC的中点,
∴AD=DC=14,
∴BD=AD-AB=7;
综上,线段BD的长为5或7.
故选:C.
【点睛】
本题考查了两点间的距离,线段中点的定义,利用线段的比例得出AC、BC的长是解题关键,要分类讨论,以防遗漏.
6、C
【分析】
由已知得到,再将变形,整体代入计算可得.
【详解】
解:∵,
∴,
∴
=
=
=9
故选:C.
【点睛】
本题主要考查代数式的求值,解题的关键是掌握整体代入思想的运用.
7、C
【分析】
在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从摸到白球的频率稳定在0.4左右得到比例关系,列出方程求解即可.
【详解】
解:由题意可得,
,
解得,a=15.
经检验,a=15是原方程的解
故选:C.
【点睛】
本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据白球的频率得到相应的等量关系.
8、C
【分析】
根据与的差是单项式,判定它们是同类项,根据同类项的定义计算即可.
【详解】
∵与的差是单项式,
∴与是同类项,
∴n+2=3,2m-1=3,
∴m=2, n=1,
故选C.
【点睛】
本题考查了同类项即含有的字母相同,且相同字母的指数也相同,准确判断同类项是解题的关键.
9、A
【分析】
根据题意作出合适的辅助线,可以先证明△ADC和△AOB的关系,即可建立y与x的函数关系,从而可以得到哪个选项是正确的.
【详解】
解:作AD∥x轴,作CD⊥AD于点D,如图所示,
由已知可得,OB=x,OA=1,∠AOB=90°,∠BAC=90°,AB=AC,点C的纵坐标是y,
∵AD∥x轴,
∴∠DAO+∠AOB=180°,
∴∠DAO=90°,
∴∠OAB+∠BAD=∠BAD+∠DAC=90°,
∴∠OAB=∠DAC,
在△OAB和△DAC中
,
∴△OAB≌△DAC(AAS),
∴OB=CD,
∴CD=x,
∵点C到x轴的距离为y,点D到x轴的距离等于点A到x的距离1,
∴y=x+1(x>0).
故选:A.
【点睛】
本题考查动点问题的函数图象,全等三角形的性质和判定,等腰三角形的定义.解题的关键是明确题意,建立相应的函数关系式,根据函数关系式判断出正确的函数图象.
10、D
【分析】
根据只有符号不同的两个数是互为相反数解答即可.
【详解】
解:的相反数是3,
故选D.
【点睛】
本题考查了相反数的定义,只有符号不同的两个数是互为相反数,正数的相反数是负数,0的相反数是0,负数的相反数是正数.
二、填空题
1、5或3
【分析】
分点P在圆内或圆外进行讨论.
【详解】
解:①当点P在圆内时,⊙O的直径长为8+2=10(cm),半径为5cm;
②当点P在圆外时,⊙O的直径长为8-2=6(cm),半径为3cm;
综上所述:⊙O的半径长为 5cm或3cm.
故答案为:5或3.
【点睛】
本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.
2、-10
【分析】
先确定第1次操作,;第2次操作,;第3次操作,;第4次操作,;第5次操作,;第6次操作,;…,观察得到第4次操作后,偶数次操作结果为;奇数次操作结果为,据此解答即可.
【详解】
第1次操作,;
第2次操作,;
第3次操作,;
第4次操作,;
第5次操作,;
第6次操作,;
第7次操作,;
…
第2020次操作,.
故答案为:.
【点睛】
本题考查了绝对值和探索规律.含绝对值的有理数减法,解题的关键是先计算,再观察结果是按照什么规律变化的探寻规律要认真观察、仔细思考,善用联想来解决这类问题.
3、
【分析】
第四象限点的特征是,所以当横坐标只能为2或3,纵坐标只能是或,画出列表图或树状图,算出满足条件的情况,进一步求得概率即可.
【详解】
如下图:
| -4 | -1 | 2 | 3 |
-4 |
|
|
|
|
-1 |
|
|
|
|
2 |
|
|
|
|
3 |
|
|
|
|
∵第四象限点的坐标特征是,
∴满足条件的点分别是: ,共4种情况,
又∵从列表图知,共有12种等可能性结果,
∴点在第四象限的概率为.
故答案为:
【点睛】
本题主要考察概率的求解,要熟悉树状图或列表图的要点是解题关键.
4、
【分析】
直接根据一元二次方程的解的定义,将代入得到关于的一元一次方程,进而解方程求解即可.
【详解】
解:∵关于x的方程x2﹣x+2a=4有一个根是x=﹣1,
解得
故答案为:1
【点睛】
本题考查了一元二次方程的解的定义,掌握解的定义是解题的关键.一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的值称为一元二次方程的解.
5、3
【分析】
先将分式方程转化为整式方程,根据分式方程无解,可得,进而求得的值.
【详解】
解:,
,
,
,
方程无解,
,
,
,
故答案为:3.
【点睛】
本题考查了解分式方程,掌握分式方程的计算是解题的关键.
三、解答题
1、
(1),
(2),
【分析】
(1)用配方法解即可;
(2)用因式分解法即可.
(1)
方程配方得:
开平方得:
解得:,
(2)
原方程可化为:
即
∴或
解得:,
【点睛】
本题考查了解一元二次方程的配方法和因式分解法,根据方程的特点采用适当的方法可使解方程简便.
2、,
【分析】
运用因式分解法求解方程即可.
【详解】
解:x2﹣4x﹣9996=0
∴,
【点睛】
本题考查了解一元二次方程-因式分解法:就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).
3、
(1)-43
(2)3
【分析】
(1)根据定义变形,计算可得结果;
(2)根据定义变形,得到方程,求出x值即可.
【小题1】
解:由题意可得:
=
=
=
=;
【小题2】
∵
=
=
=
=2
解得:x=3.
【点睛】
本题考查了新定义运算,理解定义,结合新定义,能将所求问题转化为一元一次方程是解题的关键.
4、
(1)120;
(2)
【分析】
(1)用自驾的人数除以所占百分数计算即可;
(2)先计算出乘公交的人数=总人数-自驾人数-其它人数,后计算即可.
(1)
∵ “自驾”方式的人数是32人,且是调查总人数的,
∴总人数为:32÷=120(人).
(2)
∵选择“其它”方式的人数是选择“自驾”人数的,“自驾”方式的人数是32人,
∴选择“其它”方式的人数是32×=20(人)
∴选择公交的人数是:120-32-20=68(人),
∴选择“公交”方式的人数占调查总人数的.
【点睛】
本题考查了条形统计图,样本估计整体,正确获取解题信息是解题的关键.
5、
(1)①见解析;②∠BPH=90°
(2),证明见解析
【分析】
(1)①按照题意作图即可.
②由等边三角形性质及平角为180°即可求得.
(2)由(1)知是等边三角形可证得是等边三角形,即可由边角边证得,再由直角三角形的性质以及平角的性质可推得.
(1)
①如图所示,即为所求;以B、O为圆心,OB长为半径,画弧交于点C,连接OC,BC,即为等边三角形.
②是等边三角形,
,
,
,
;
(2)
,证明如下:
如图,连接,,
由(1)可知,是等边三角形,
,,
是等边三角形,
,,
,
,
,,
,
,
,
,
,
,
,
在中,,
.
【点睛】
本题考查了三角形内的综合问题,包括尺规作图,全等三角形的证明及性质,等边三角形的性质等,两边和它们的夹角对应相等的两个三角形全等(简写成“边角边”或“”),等边三角形三边相等,且每个角都等于60°,在直角三角形中,如果一个锐角等于,那么它所对的直角边等于斜边的一半熟悉其判定及性质是解题的关键.
【高频真题解析】2022年河北省中考数学模拟真题测评 A卷(精选): 这是一份【高频真题解析】2022年河北省中考数学模拟真题测评 A卷(精选),共25页。试卷主要包含了方程的解为,把分式化简的正确结果为,一元二次方程的一次项的系数是等内容,欢迎下载使用。
【高频真题解析】2022年最新中考数学模拟真题测评 A卷(精选): 这是一份【高频真题解析】2022年最新中考数学模拟真题测评 A卷(精选),共21页。试卷主要包含了下列各式,下列说法正确的是.,不等式+1<的负整数解有,计算12a2b4•÷的结果等于,分式方程有增根,则m为等内容,欢迎下载使用。
【高频真题解析】中考数学模拟真题测评 A卷(精选): 这是一份【高频真题解析】中考数学模拟真题测评 A卷(精选),共20页。试卷主要包含了的相反数是,下列计算正确的是等内容,欢迎下载使用。