【高频真题解析】2022年四川达州市中考数学一模试题(含答案解析)
展开2022年四川达州市中考数学一模试题
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,在中,.分别以点A,B为圆心,大于的长为半径画弧.两弧相交于点M和点N,作直线MN分别交BC、AB于点D和点E,若,则的度数是( )
A.22° B.24° C.26° D.28°
2、如图,点是以点为圆心,为直径的半圆上的动点(点不与点,重合),.设弦的长为,的面积为,则下列图象中,能表示与的函数关系的图象大致是( )
A. B. C. D.
3、已知正五边形的边长为1,则该正五边形的对角线长度为( ).
A. B. C. D.
4、如图是一个正方体的展开图,现将此展开图折叠成正方体,有“北”字一面的相对面上的字是( )
A.冬 B.奥 C.运 D.会
5、已知的两个根为、,则的值为( )
A.-2 B.2 C.-5 D.5
6、的值( ).
A. B.2022 C. D.-2022
7、一圆锥高为4cm,底面半径为3cm,则该圆锥的侧面积为( )
A. B. C. D.
8、若方程有实数根,则实数a的取值范围是( )
A. B.
C.且 D.且
9、下列说法中不正确的是( )
A.平面内,垂直于同一条直线的两直线平行
B.过一点有且只有一条直线与已知直线平行
C.平面内,过一点有且只有一条直线与已知直线垂直
D.直线外一点到这条直线的垂线段的长度,叫做这个点到直线的距离
10、下列关于x的方程中,一定是一元二次方程的是( )
A. B.
C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,P是反比例函数图象上第二象限内的一点,且矩形PEOF的面积为4,则反比例函数的解析式是______.
2、如图,ABC内接于⊙O,∠BAC=120°,AB=AC,BD为⊙O的直径,CD=6,OA交BC于点E,则AD的长度是 ___.
3、如图,已知点B在线段CF上,AB∥CD,AD∥BC,DF交AB于点E,联结AF、CE,S△BCE:S△AEF的比值为___.
4、抛物线与x轴的两个交点之间的距离为4,则t的值是______.
5、用同样大小的两种不同颜色的正方形纸片,按如图方式拼成正方形.第90个比第89个多___个小正方形纸片.
三、解答题(5小题,每小题10分,共计50分)
1、如图,在平面直角坐标系中,点M在x轴负半轴上,⊙M与x轴交于A、B两点(A在B的左侧),与y轴交于C、D两点(点C在y轴正半轴上),且,点B的坐标为,点P为优弧CAD上的一个动点,连结CP,过点M作于点E,交BP于点N,连结AN.
(1)求⊙M的半径长;
(2)当BP平分∠ABC时,求点P的坐标;
(3)当点P运动时,求线段AN的最小值.
2、如图,在平面直角坐标系xOy中,抛物线与x轴交于点A(-1,0)和点B(3,0),与y轴交于点C,顶点为点D.
(1)求该抛物线的表达式及点C的坐标;
(2)联结BC、BD,求∠CBD的正切值;
(3)若点P为x轴上一点,当△BDP与△ABC相似时,求点P的坐标.
3、如图,在中,.
(1)用尺规完成以下基本图形:作边的垂直平分线,与边交于点D,与边交于点E;(保留作图痕迹,不写作法)
(2)在(1)所作的图形中,连接,若,,求的周长.
4、郑州到西安的路程为480千米,由于西安疫情紧张,郑州物资中心对西安进行支援.甲乙两辆物资车分别从郑州和西安出发匀速行驶相向而行.甲车到西安后立即返回,已知乙车的速度为每小时,且到郑州后停止行驶,进行消毒.它们离各自出发地的距离与行驶时间之间的关系如下图所示.
(1)______,______.
(2)请你求出甲车离出发地郑州的距离与行驶时间之间的函数关系式.
(3)求出点的坐标,并说明此点的实际意义.
(4)直接写出甲车出发多长时间两车相距40千米.
5、如图,AC,BD相交于的点O,且∠ABO=∠C.求证:△AOB∽△DOC.
-参考答案-
一、单选题
1、B
【分析】
由尺规作图痕迹可知MN垂直平分AB,得到DA=DB,进而得到∠DAB=∠B=50°,再利用等腰三角形的性质和三角形内角和计算出∠BAC,然后计算∠BAC-∠DAB即可.
【详解】
解:∵,
∴∠B=∠C=52°,∠BAC=180°-∠B-∠C=180°-52°-52°=76°,
由尺规作图痕迹可知:MN垂直平分AB,
∴DA=DB,
∴∠DAB=∠B=52°,
∴∠CAD=∠BAC-∠DAB=76°-52°=24°.
故选:B.
【点睛】
本题考查了线段垂直平分线的尺规作图及等腰三角形的性质等,熟练掌握线段垂直平分线的性质及等腰三角形的性质是解决本类题的关键.
2、B
【分析】
由AB为圆的直径,得到∠C=90°,在Rt△ABC中,由勾股定理得到,进而列出△ABC面积的表达式即可求解.
【详解】
解:∵AB为圆的直径,
∴∠C=90°,
,,由勾股定理可知:
∴,
∴
此函数不是二次函数,也不是一次函数,
排除选项A和选项C,
为定值,当时,面积最大,
此时,
即时,最大,故排除,选.
故选:.
【点睛】
本题考查了动点问题的函数图象,根据题意列出函数表达式是解决问题的关键.
3、C
【分析】
如图,五边形ABCDE为正五边形, 证明 再证明可得:设AF=x,则AC=1+x,再解方程即可.
【详解】
解:如图,五边形ABCDE为正五边形,
∴五边形的每个内角均为108°,
∴∠BAG=∠ABF=∠ACB=∠CBD= 36°,
∴∠BGF=∠BFG=72°,
设AF=x,则AC=1+x,
解得:,
经检验:不符合题意,舍去,
故选C
【点睛】
本题考查的是正多边形的性质,等腰三角形的判定与性质,相似三角形的判定与性质,证明是解本题的关键.
4、D
【分析】
正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.
【详解】
解:正方体的表面展开图,相对的面之间一定相隔一个正方形,
“京”与“奥”是相对面,
“冬”与“运”是相对面,
“北”与“会”是相对面.
故选:D.
【点睛】
本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.
5、B
【分析】
直接运用一元二次方程根与系数的关系求解即可.
【详解】
解:∵的两个根为、,
∴
故选:B
【点睛】
本题主要考查了一元二次方程根与系数的关系,若、为一元二次方程的两个实数根,则有,.
6、B
【分析】
数轴上表示数的点与原点的距离是数的绝对值,根据绝对值的含义可得答案.
【详解】
解:
故选B
【点睛】
本题考查的是绝对值的含义,掌握“求解一个数的绝对值”是解本题的关键.
7、C
【分析】
根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长,扇形的面积公式求解.
【详解】
解: ∵一圆锥高为4cm,底面半径为3cm,
∴圆锥母线=,
∴圆锥的侧面积=(cm2).
故选C.
【点睛】
本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.
8、B
【分析】
若方程为一元二次方程,则有,,求解;若,方程为一元一次方程,判断有实数根,进而求解取值范围即可.
【详解】
解:若方程为一元二次方程,则有,
解得且
若,方程为一元一次方程,有实数根
故选B.
【点睛】
本题考查了一元二次方程根的判别,一元一次方程的根.解题的关键在于全面考虑的情况.
9、B
【分析】
根据点到直线的距离、垂直的性质及平行线的判定等知识即可判断.
【详解】
A、平面内,垂直于同一条直线的两直线平行,故说法正确;
B.过直线外一点有且只有一条直线与已知直线平行,故说法错误;
C.平面内,过一点有且只有一条直线与已知直线垂直,此说法正确;
D.直线外一点到这条直线的垂线段的长度,叫做这个点到直线的距离,这是点到直线的距离的定义,故此说法正确.
故选:B
【点睛】
本题主要考查了垂直的性质、点到直线的距离、平行线的判定等知识,理解这些知识是关键.但要注意:平面内,垂直于同一条直线的两直线平行;平面内,过一点有且只有一条直线与已知直线垂直;这两个性质的前提是平面内,否则不成立.
10、C
【分析】
根据一元二次方程的定义判断.
【详解】
A.含有,不是一元二次方程,不合题意;
B.整理得,-x+1=0,不是一元二次方程,不合题意;
C.x2=0是一元二次方程,故此选项符合题意;
D.当a=0时,ax2+bx+c=0,不是一元二次方程,不合题意.
故选C.
【点睛】
本题考查了一元二次方程的定义,解题时要注意两个方面:1、一元二次方程包括三点:①是整式方程,②只含有一个未知数,③所含未知数的项的最高次数是2;2、一元二次方程的一般形式是ax2+bx+c=0(a≠0).
二、填空题
1、##
【分析】
因为过双曲线上任意一点引x轴、y轴垂线,所得矩形面积S是个定值,即S=|k|,再根据反比例函数的图象所在的象限确定k的值,即可求出反比例函数的解析式.
【详解】
解:由图象上的点所构成的矩形PEOF的面积为4可知,
S=|k|=4,k=±4.
又由于反比例函数的图象在第二、四象限,k<0,
则k=-4,所以反比例函数的解析式为 .
故答案为: .
【点睛】
本题考查反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.
2、
【分析】
过O作于点F,故,由得,故根据直径所对的圆周角等于得,由直角三角形中角所对的边是斜边的一半可得,由三角形外角的性质得,在中由勾股定理可得AF的值,进而可得AD值.
【详解】
如图,过O作于点F,故
∵,
∴,
∴,
∴,
∵BD为⊙O的直径,
∴
∵,,
∴,,
∴,
在中,,,
∴,
∴,
∴.
故答案为:.
【点睛】
本题考查圆周角定理,直角三角形的性质以及勾股定理,解题的关键是掌握直角三角形中角所对的边是斜边的一半,属于中考常考题型.
3、1
【分析】
连接BD,利用平行线间距离相等得到同底等高的三角形面积相等即可解答.
【详解】
解:连接BD,如下图所示:
∵BC∥AD,
∴S△AFD= S△ABD,
∴S△AFD- S△AED= S△ABD- S△AED,
即S△AEF= S△BED,
∵AB∥CD,
∴S△BED=S△BEC,
∴S△AEF=S△BEC,
∴S△BCE:S△AEF=1.
故答案为:1.
【点睛】
本题以平行为背景考查了同底等高的三角形面积相等,找到要求的三角形有关的同(等)底或同(等)高是解题的关键.
4、
【分析】
设抛物线与x轴的两个交点的横坐标为 则是的两根,且 再利用两个交点之间的距离为4列方程,再解方程可得答案.
【详解】
解:设抛物线与x轴的两个交点的横坐标为
是的两根,且
两个交点之间的距离为4,
解得: 经检验:是原方程的根且符合题意,
故答案为:
【点睛】
本题考查的是二次函数与轴的交点坐标,两个交点之间的距离,掌握“求解二次函数与轴的交点坐标”是解本题的关键.
5、179
【分析】
根据已知图形得出第2个图形比第1个图形多:4﹣1=3个;第3个图形比第2个图形多:9﹣4=5个;第4个图形比第3个图形多:16﹣9=7个;即可得出后面一个图形比前面一个图形多的个数是连续奇数,进而得出公式第n个图形比第(n﹣1)个图形多2n﹣1个小正方形;由此利用规律得出答案即可.
【详解】
解:根据分析可得出公式:第n个图形比第(n﹣1)个图形多2n﹣1个小正方形
∴第90个比第89个图形多2×90﹣1=179个小正方形
故答案为:179
【点睛】
此题主要考查了图形的变化规律,利用已知图形得出图形相邻之间的个数变化规律是解题关键.
三、解答题
1、
(1)的半径长为6;
(2)点;
(3)线段AN的最小值为3.
【分析】
(1)连接CM,根据题意及垂径定理可得,,由直角三角形中角的逆定理可得,,得出为等边三角形,利用等边三角形的性质可得,即可确定半径的长度;
(2)连接AP,过点P作,交AB于点F,由直径所对的圆周角是可得为直角三角形,结合(1)中为等边三角形,根据BP平分,可得,在与中,分别利用含角的直角三角形的性质和勾股定理计算结合点所在象限即可得;
(3)结合图象可得:当B、N、A三点共线时,利用三角形三边长关系可得此时PN取得最小值,即可得出结果.
(1)
解:如图所示:连接CM,
∵,
∴,
∵,
∴,
∴,,
∵,
∴为等边三角形,
∵,
∴,
∴,
∴的半径长为6;
(2)
解:连接AP,过点P作,交AB于点F,如(1)中图所示:
∵AB为的直径,,
∴,
∴为直角三角形,
由(1)得为等边三角形,
∵BP平分,
∴,
∴,
∴,
在中,,
∴,
∴,
∴,
∴,,
点;
(3)
结合图象可得:当B、N、A三点共线时,,PN取得最小值,
∵在中,,
∴当B、N、A三点共线时,PN取得最小值,
此时点P与点A重合,点N与点M重合,
,
∴线段AN的最小值为3.
【点睛】
题目主要考查垂径定理,含角的直角三角形的性质和勾股定理,直径所对的圆周角是,等边三角形的判定和性质等,理解题意,作出相应辅助线,综合运用这些知识点是解题关键.
2、
(1),点C的坐标为(0,-3)
(2)
(3)(-3,0)或(-,0)
【分析】
(1)把A、B两点坐标代入函数求出b,c的值即可求函数表达式;再令x=0,求出y从而求出C点坐标;
(2)先求B、C、D三点坐标,再求证△BCD为直角三角形,再根据正切的定义即可求出;
(3)分两种情况分别进行讨论即可.
(1)
解:(1)将A(-1,0)、B(3,0)代入,得
解得:
所以,.
当x=0时,.∴点C的坐标为(0,-3).
(2)
解:连接CD,过点D作DE⊥y轴于点E,
∵,
∴点D的坐标为(1,-4).
∵B(3,0)、C(0,-3)、D(1,-4),E(0,-4),
∴OB=OC=3,CE=DE=1,
∴BC=,DC=,BD=.
∴.
∴∠BCD=90°.
∴tan∠CBD=.
(3)
解:∵tan∠ACO=,
∴∠ACO=∠CBD.
∵OC =OB,
∴∠OCB=∠OBC=45°.
∴∠ACO+∠OCB =∠CBD+∠OBC.
即:∠ACB =∠DBO.
∴当△BDP与△ABC相似时,点P在点B左侧.
(i)当时,
∴.
∴BP=6.
∴P(-3,0).
(ii)当时,
∴.
∴BP=.
∴P(-,0).
综上,点P的坐标为(-3,0)或(-,0).
【点睛】
本题是二次函数的综合题,掌握相关知识是解题的关键.
3、
(1)见解析
(2)26
【分析】
(1)分别以点A、点B为圆心,以大于AB为半径画弧得两个交点,过两个交点画直线即可;
(2)由垂直平分线的性质可得,然后根据周长公式求解即可.
(1)
解:如图,直线即为所求的垂直平分线;
(2)
解:∵直线为边的垂直平分线,
∴.
∴.
∵,
∴的周长.
【点睛】
本题考查了尺规作图-作线段的垂直平分线,以及线段垂直平分线的性质,掌握线段垂直平分线上的点到线段两个端点的距离相等是解答本题的关键.
4、
(1)8,6.5
(2)
(3)点P的坐标为(5,360),点P的实际意义是:甲车在行驶5小时后,甲乙两车分别距自己的出发地的距离为360千米
(4)当甲车出发2.4小时或2.8小时或小时两车相距40千米
【分析】
(1)先根据题意判断出直线的函数图像时乙车的,折线的函数图像时甲车的,然后求出甲车的速度即可求出甲返回郑州的时间,即可求出m;然后算出乙车从西安到郑州需要的时间即可求出n;
(2)分甲从郑州到西安和从西安到郑州两种情况求解即可;
(3)根据函数图像可知P点代表的实际意义是:在P点时,甲乙两车距自己的出发地的距离相同,由此列出方程求解即可;
(4)分情况:当甲车在去西安的途中,甲乙两车相遇前,当甲车在去西安的途中,甲乙两车相遇后,当甲车在返回郑州的途中,乙未到郑州时,当甲车在返回郑州的途中,乙已经到郑州时,四种情况讨论求解即可.
(1)
解:∵甲乙两辆物资车分别从郑州和西安出发匀速行驶相向而行.甲车到西安后立即返回,乙车到底郑州后立即停止,
∴直线的函数图像是乙车的,折线的函数图像是甲车的,
由函数图像可知,甲车4小时从郑州行驶到西安走了480千米,
∴甲车的速度=480÷4=120千米/小时,
∴甲车从西安返回郑州需要的时间=480÷120=4小时,
∴m=4+4=8;
∵乙车的速度为80千米/小时,
∴乙车从西安到达郑州需要的时间=480÷80=6小时,
∵由函数图像可知乙车是在甲车出发0.5小时后出发,
∴n=0.5+6=6.5,
故答案为:8,6.5;
(2)
解:当甲车从郑州去西安时,
∵甲车的速度为120千米/小时,
∴甲车与郑州的距离,
当甲车从西安返回郑州时,
∵甲车的速度为120千米/小时,
∴甲车与郑州的距离,
∴;
(3)
解:根据函数图像可知P点代表的实际意义是:在P点时,甲乙两车距自己的出发地的距离相同,
∵此时甲车处在返程途中,
∴,
解得,
∴,
∴点P的坐标为(5,360),
∴点P的实际意义是:甲车在行驶5小时后,甲乙两车分别距自己的出发地的距离为360千米;
(4)
解:当甲车在去西安的途中,甲乙两车相遇前,
由题意得:,
解得;
当甲车在去西安的途中,甲乙两车相遇后,
由题意得:,
解得;
当甲车在返回郑州的途中,乙未到郑州时,
由题意得:
解得(不符合题意,舍去),
当甲车在返回郑州的途中,乙已经到郑州时,
由题意得:
解得;
综上所述,当甲车出发2.4小时或2.8小时或小时两车相距40千米.
【点睛】
本题主要考查了从函数图像获取信息,一元一次方程的应用,正确理解题意是解题的关键.
5、见解析
【分析】
利用对顶角相等得到∠AOB=∠COD,再结合已知条件及相似三角形的判定定理即可求解.
【详解】
证明:∵AC,BD相交于的点O,
∴∠AOB=∠DOC,
又∵∠ABO=∠C,
∴△AOB∽△DOC.
【点睛】
本题考查了相似三角形的判定定理:若一对三角形的两组对应角相等,则这两个三角形相似,由此即可求解.
精品解析:2022年四川省达州市中考数学真题(解析版): 这是一份精品解析:2022年四川省达州市中考数学真题(解析版),共32页。
【高频真题解析】中考数学一模试题(含答案解析): 这是一份【高频真题解析】中考数学一模试题(含答案解析),共24页。试卷主要包含了已知等腰三角形的两边长满足+,计算12a2b4•÷的结果等于,下列运算中,正确的是,方程的解为等内容,欢迎下载使用。
【高频真题解析】中考数学三模试题(含答案及解析): 这是一份【高频真题解析】中考数学三模试题(含答案及解析),共23页。试卷主要包含了在,,,中,最大的是,下列运算中,正确的是,在,,, ,中,负数的个数有.,若,则下列不等式正确的是等内容,欢迎下载使用。