


【高频真题解析】2022年辽宁省营口市中考数学第一次模拟试题(含详解)
展开2022年辽宁省营口市中考数学第一次模拟试题
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,四棱柱的高为9米,底面是边长为6米的正方形,一只蚂蚁从如图的顶点A开始,爬向顶点B.那么它爬行的最短路程为( )
A.10米 B.12米 C.15米 D.20米
2、已知,,且,则的值为( )
A.1或3 B.1或﹣3 C.﹣1或﹣3 D.﹣1或3
3、某商品原价为 200 元,连续两次平均降价的百分率为 a ,连续两次降价后售价为 148 元, 下面所列方程正确的是 ( )
A.200(1 a)2 148 B.200(1 a)2 148
C.200(1 2a)2 148 D.200(1 a 2) 148
4、要使式子有意义,则( )
A. B. C. D.
5、下列方程是一元二次方程的是( )
A.x2+3xy=3 B.x2+=3 C.x2+2x D.x2=3
6、有下列说法:①两条不相交的直线叫平行线;②同一平面内,过一点有且只有一条直线与已知直线垂直;③两条直线相交所成的四个角中,如果有两个角相等,那么这两条直线互相垂直;④有公共顶点的两个角是对顶角.其中说法正确的个数是( )
A.1 B.2 C.3 D.4
7、若关于x的不等式组有且仅有3个整数解,且关于y的方程的解为负整数,则符合条件的整数a的个数为( )
A.1个 B.2个 C.3个 D.4个
8、 “科学用眼,保护视力”是青少年珍爱生命的具体表现,某班50名同学的视力检查数据如下表:
视力 | 4.3 | 4.4 | 4.5 | 4.6 | 4.7 | 4.8 | 4.9 | 5.0 |
人数 | 2 | 3 | 6 | 9 | 12 | 10 | 5 | 3 |
则视力的众数是( )
A.4.5 B.4.6 C.4.7 D.4.8
9、下列图形是中心对称图形的是( ).
A. B.
C. D.
10、如图,为直线上的一点,平分,,,则的度数为( )
A.20° B.18° C.60° D.80°
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、等腰三角形ABC中,项角A为50°,点D在以点A为圆心,BC的长为半径的圆上,若BD=BA,则∠DBC的度数为_____.
2、若矩形ABCD的对角线AC,BD相交于点,且,,则矩形ABCD的面积为_____________.
3、如图(1)是一个横断面为抛物线形状的拱桥,水面在l时,拱顶(拱桥洞的最高点)离水面3米,水面宽4米.如果按图(2)建立平面直角坐标系,那么抛物线的解析式是_____.
4、如图,将一副直角三角板叠放在一起,使直角顶点重合于点,若∠COB=50°,则∠AOD=_______
5、如图,在△ABC中,∠ABC=120°,AB=12,点D在边AC上,点E在边BC上,sin∠ADE=,ED=5,如果△ECD的面积是6,那么BC的长是_____.
三、解答题(5小题,每小题10分,共计50分)
1、如图,一次函数与反比例函数(k≠0)交于点A、B两点,且点A的坐标为(1,3),一次函数与轴交于点C,连接OA、OB.
(1)求一次函数和反比例函数的表达式;
(2)求点B的坐标及的面积;
(3)过点A作轴的垂线,垂足为点D.点M是反比例函数第一象限内图像上的一个动点,过点M作轴的垂线交轴于点N,连接CM.当与Rt△CNM相似时求M点的坐标.
2、如图,在四边形ABCD中,BA=BC,AC⊥BD,垂足为O.P是线段OD上的点(不与点O重合),把线段AP绕点A逆时针旋转得到AQ,∠OAP=∠PAQ,连接PQ,E是线段PQ的中点,连接OE交AP于点F.
(1)若BO=DO,求证:四边形ABCD是菱形;
(2)探究线段PO,PE,PF之间的数量关系.
3、化简:
(1);
(2)
4、如图,点A,B,C,D在同一条直线上,CEDF,EC=BD,AC=FD.求证:AE=FB.
5、沙坪坝区某街道为积极响应“开展全民义务植树40周年”活动,投入一定资金绿化一块闲置空地,购买了甲、乙两种树木共70棵,且甲种树木单价、乙种树木单价每棵分别为90元,80元,共用去资金6000元.
(1)求甲、乙两种树木各购买了多少棵?
(2)经过一段时间后,种植的这批树木成活率高,绿化效果好.该街道决定再购买一批这两种树木绿化另一块闲置空地,两种树木的购买数量均与第一批相同,购买时发现甲种树木单价上涨了a%,乙种树木单价下降了a%,且总费用不超过6500元,求a的最大整数值.
-参考答案-
一、单选题
1、C
【分析】
将立体图形展开,有两种不同的展法,连接AB,利用勾股定理求出AB的长,找出最短的即可.
【详解】
解:如图,
(1)AB==;
(2)AB==15,
由于15<,
则蚂蚁爬行的最短路程为15米.
故选:C.
【点睛】
本题考查了平面展开--最短路径问题,要注意,展开时要根据实际情况将图形安不同形式展开,再计算.
2、A
【分析】
由题意利用乘方和绝对值求出x与y的值,即可求出x-y的值.
【详解】
解:∵,,
,
∴x=1,y=-2,此时x-y=3;
x=-1,y=-2,此时x-y=1.
故选:A.
【点睛】
此题考查了有理数的乘方,绝对值,以及有理数的减法,熟练掌握运算法则是解本题的关键.
3、B
【分析】
第一次降价后价格为,第二次降价后价格为整理即可.
【详解】
解:第一次降价后价格为
第二次降价后价格为
故选B.
【点睛】
本题考查了一元二次方程的应用.解题的关键在于明确每次降价前的价格.
4、B
【分析】
根据分式有意义的条件,分母不为0,即可求得答案.
【详解】
解:要使式子有意义,
则
故选B
【点睛】
本题考查了分式有意义的条件,理解分式有意义的条件是“分母不为0”是解题的关键.
5、D
【分析】
根据一元二次方程的定义逐个判断即可.只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.
【详解】
解:A.是二元二次方程,不是一元二次方程,故本选项不符合题意;
B.是分式方程,故本选项不符合题意;
C.不是方程,故本选项不符合题意;
D.是一元二次方程,故本选项符合题意;
故选:D.
【点睛】
本题考查了一元二次方程的定义,能熟记一元二次方程的定义是解此题的关键.
6、A
【分析】
根据平行线的定义、垂直的定义及垂线的唯一性、对顶角的含义即可判断.
【详解】
同一平面内不相交的两条直线叫做平行线,故说法①错误;说法②正确;两条直线相交所成的四个角中,如果有一个角是直角,那么这两条直线互相垂直,当这两个相等的角是对顶角时则不垂直,故说法③错误;根据对顶角的定义知,说法④错误;故正确的说法有1个;
故选:A
【点睛】
本题考查了两条直线的位置关系中的相关概念及性质,掌握这些概念是关键.
7、C
【分析】
解不等式组得到,利用不等式组有且仅有3个整数解得到,再解分式方程得到,根据解为负整数,得到a的取值,再取共同部分即可.
【详解】
解:解不等式组得:,
∵不等式组有且仅有3个整数解,
∴,
解得:,
解方程得:,
∵方程的解为负整数,
∴,
∴,
∴a的值为:-13、-11、-9、-7、-5、-3,…,
∴符合条件的整数a为:-13,-11,-9,共3个,
故选C.
【点睛】
本题考查了分式方程的解:求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解.也考查了解一元一次不等式组的整数解.
8、C
【分析】
出现次数最多的数据是样本的众数,根据定义解答.
【详解】
解:∵4.7出现的次数最多,∴视力的众数是4.7,
故选:C.
【点睛】
此题考查了众数的定义,熟记定义是解题的关键.
9、A
【分析】
把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,据此可得结论.
【详解】
解:选项B、C、D均不能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以不是中心对称图形,
选项A能找到这样的一个点,使图形绕某一点旋转180°后与原来的图形重合,所以是中心对称图形,
故选:A.
【点睛】
本题主要考查了中心对称图形,掌握中心对称图形的定义是解题关键.
10、A
【分析】
根据角平分线的定义得到,从而得到,再根据可得,即可求出结果.
【详解】
解:∵OC平分,
∴,
∴,
∵,
∴,
∴,
故选:A.
【点睛】
本题主要考查角的计算的知识点,运用好角的平分线这一知识点是解答的关键.
二、填空题
1、15°或115°
【分析】
根据题意作出图形,根据等腰三角形的性质和三角形的内角和定理求得,,根据即可求得∠DBC的度数
【详解】
解:如图,等腰三角形ABC中,顶角为50°,点D在以点A为圆心,BC的长为半径的圆上,
,
BD=BA,
又
当在位置时,同理可得
故答案为:15°或115°
【点睛】
本题考查了圆的性质,三角形全等的性质与判定,三角形内角和定理,等腰三角形的定义,根据题意画出图形是解题的关键.
2、
【分析】
如图,过点O作,根据矩形的对角线相等且互相平分可得,,,由得,利用勾股定理求出,由矩形面积得解.
【详解】
如图,过点O作,
∵四边形ABCD是矩形,
∴,,,
∵,
∴,
∴,
∴,
∴,,
∴.
故答案为:.
【点睛】
本题考查矩形的性质与勾股定理,掌握矩形的性质是解题的关键.
3、
【分析】
设出抛物线方程y=ax2(a≠0)代入坐标(-2,-3)求得a.
【详解】
解:设出抛物线方程y=ax2(a≠0),由图象可知该图象经过(-2,-3)点,
∴-3=4a,
a=-,
∴抛物线解析式为y=-x2.
故答案为:.
【点睛】
本题主要考查二次函数的应用,解题的关键在于能够熟练掌握待定系数法求解二次函数解析式.
4、130°130度
【分析】
先计算出,再根据可求出结论.
【详解】
解:∵,
∴
∵
∴
故答案为:130°
【点睛】
本题考查了角的计算及余角的计算,熟悉图形是解题的关键.
5、##
【分析】
如图,过点E作EF⊥BC于F,过点A作AH⊥CB交CB的延长线于H.解直角三角形求出BH,CH即可解决问题.
【详解】
解:如图,过点E作EF⊥BC于F,过点A作AH⊥CB交CB的延长线于H.
∵∠ABC=120°,
∴∠ABH=180°﹣∠ABC=60°,
∵AB=12,∠H=90°,
∴BH=AB•cos60°=6,AH=AB•sin60°=6,
∵EF⊥DF,DE=5,
∴sin∠ADE== ,
∴EF=4,
∴DF===3,
∵S△CDE=6,
∴ ·CD·EF=6,
∴CD=3,
∴CF=CD+DF=6,
∵tanC==,
∴ =,
∴CH=9,
∴BC=CH﹣BH=9﹣6.
故答案为:
【点睛】
本题主要考查了解直角三角形,根据题意构造合适的直角三角形是解题的关键.
三、解答题
1、(1)一次函数表达式为,反比例函数表达式为;(2),;(3)或
【分析】
(1)把分别代入一次函数与反比例函数,解出,即可得出答案;
(2)把一次函数和反比例函数联立求解即可求出点B坐标,令代入一次函数解出点C坐标,由即可;
(3)根据相似三角形的判定:两边成比例且夹角相等的两个三角形相似,找出对应边成比例求解即可.
【详解】
(1)把代入一次函数得:,
解得:,
∴一次函数表达式为,
把代入反比例函数得:,即,
∴反比例函数表达式为;
(2),
解得:或,
∴,
令代入得:,
∴,
∴;
(3)
①当时,,
,,,,
∴,即,
解得:,,
∵M在第一象限,
∴,,
∴,
②当时,,
∴,即,
解得:,,
∵M在第一象限,
∴,,
∴,
综上,当与相似时,M点的坐标为或.
【点睛】
本题考查反比例函数综合以及相似三角形的判定与性质,掌握相关知识点的应用是解题的关键.
2、(1)见详解;(2)
【分析】
(1)根据线段垂直平分线的性质可知AB=AD,BC=CD,进而根据菱形的判定定理可求证;
(2)连接AE并延长,交BD的延长线于点G,连接FQ,由题意易得,则有,然后可得,则有,进而可得,然后证明,即有,最后根据勾股定理可求解.
【详解】
(1)证明:∵AC⊥BD,BO=DO,
∴AC垂直平分BD,
∴AB=AD,BC=CD,
∵BA=BC,
∴BA=AD=CD=BC,
∴四边形ABCD是菱形;
(2)解:,理由如下:
连接AE并延长,交BD的延长线于点G,连接FQ,如图所示:
由旋转的性质可得AP=AQ,
∵E是线段PQ的中点,
∴,
∵,,
∴,
∴,
∵,
∴,
∴,
设,
∵AP=AQ,E是线段PQ的中点,
∴,
∴,
∴,
∴,
∴,
∵,
∴(SAS),
∴,,
∴在Rt△QFP中,由勾股定理得:,
∵E是线段PQ的中点,
∴,
∴.
【点睛】
本题主要考查菱形的判定、等腰三角形的性质与判定、垂直平分线的性质定理、勾股定理及相似三角形的性质与判定,熟练掌握菱形的判定、等腰三角形的性质与判定、垂直平分线的性质定理、勾股定理及相似三角形的性质与判定是解题的关键.
3、(1);(2)
【分析】
(1)直接利用整式的加减运算法则化简得出答案;
(2)整式的加减,正确去括号、合并同类项即可.
【详解】
解:(1)
;
(2),
,
.
【点睛】
本题主要考查了整式的加减,正确去括号、合并同类项解题的关键是掌握相应的运算法则.
4、证明见解析
【分析】
由证明再结合已知条件证明从而可得答案.
【详解】
证明:,
EC=BD,AC=FD,
【点睛】
本题考查的是全等三角形的判定与性质,掌握“利用证明三角形全等 ”是解本题的关键.
5、
(1)甲种树木购买了40棵,乙种树木购买了30棵
(2)a的最大值为25
【分析】
(1)设甲种树木购买了x棵,乙种树木购买了y棵,根据总费用=单价×数量结合“购买了甲、乙两种树木共70棵,共用去资金6000元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;
(2)根据总费用=单价×数量结合总费用不超过6500元,即可得出关于a的一元一次不等式,解之取其中的最大值即可得出结论.
【小题1】
解:设甲种树木购买了x棵,乙种树木购买了y棵,
根据题意得:,
解得:,
答:甲种树木购买了40棵,乙种树木购买了30棵.
【小题2】
根据题意得:90×(1+a%)×40+80×(1-a%)×30≤6500,
解得:a≤25.
答:a的最大值为25.
【点睛】
本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.
2023年辽宁省营口市中考数学真题(含解析): 这是一份2023年辽宁省营口市中考数学真题(含解析),共31页。试卷主要包含了回答第二部分时,必须用0, 下列事件是必然事件的是等内容,欢迎下载使用。
【真题汇编】2022年辽宁省营口市中考数学第一次模拟试题(含答案及解析): 这是一份【真题汇编】2022年辽宁省营口市中考数学第一次模拟试题(含答案及解析),共22页。试卷主要包含了在以下实数中,如图,在中,,,,分别在等内容,欢迎下载使用。
【难点解析】2022年辽宁省营口市中考数学三年真题模拟 卷(Ⅱ)(含答案详解): 这是一份【难点解析】2022年辽宁省营口市中考数学三年真题模拟 卷(Ⅱ)(含答案详解),共22页。试卷主要包含了如图,在中,,,则的值为,下列说法正确的是等内容,欢迎下载使用。