高考数学(理数)二轮复习课时跟踪检测19《圆锥曲线中的定点定值存在性问题》大题练(学生版)
展开课时跟踪检测(十九) 圆锥曲线中的定点、定值、存在性问题(大题练)
A卷——大题保分练
1.已知椭圆C:+=1(a>b>0)的右焦点F(,0),长半轴长与短半轴长的比值为2.
(1)求椭圆C的标准方程;
(2)设不经过点B(0,1)的直线l与椭圆C相交于不同的两点M,N,若点B在以线段MN为直径的圆上,证明直线l过定点,并求出该定点的坐标.
2.设抛物线C:y2=4x的焦点为F,过F且斜率为k(k>0)的直线l与C交于A,B两点,|AB|=8.
(1)求l的方程;
(2)求过点A,B且与C的准线相切的圆的方程.
3.如图,椭圆C:+=1(a>b>0)的左顶点与上顶点分别为A,B,右焦点为F,点P在椭圆C上,且PF⊥x轴,若AB∥OP,且|AB|=2.
(1)求椭圆C的方程;
(2)已知Q是C上不同于长轴端点的任意一点,在x轴上是否存在一点D,使得直线QA与QD的斜率乘积恒为-,若存在,求出点D的坐标,若不存在,说明理由.
4.已知椭圆C:+=1(a>b>0)的焦距为4,P是椭圆C上的点.
(1)求椭圆C的方程;
(2)O为坐标原点,A,B是椭圆C上不关于坐标轴对称的两点,设=+,证明:直线AB的斜率与OD的斜率的乘积为定值.
B卷——深化提能练
1.在平面直角坐标系中,直线x-y+m=0不过原点,且与椭圆+=1有两个不同的公共点A,B.
(1)求实数m的取值所组成的集合M;
(2)是否存在定点P使得任意的m∈M,都有直线PA,PB的倾斜角互补?若存在,求出所有定点P的坐标;若不存在,请说明理由.
2.已知直线l:x=my+1过椭圆C:+=1(a>b>0)的右焦点F,抛物线x2=4y的焦点为椭圆C的上顶点,且l交椭圆C于A,B两点,点A,F,B在直线x=4上的射影依次为D,K,E.
(1)求椭圆C的方程;
(2)若直线l交y轴于点M,且=λ1,=λ2,当m变化时,证明:λ1+λ2为定值;
(3)当m变化时,直线AE与BD是否相交于定点?若是,请求出定点的坐标,并给予证明;否则,说明理由.
3.已知点M是椭圆C:+=1(a>b>0)上一点,F1,F2分别为C的左、右焦点,|F1F2|=4,∠F1MF2=60°,△F1MF2的面积为.
(1)求椭圆C的方程;
(2)设N(0,2),过点P(-1,-2)作直线l,交椭圆C于异于N的A,B两点,直线NA,NB的斜率分别为k1,k2,证明:k1+k2为定值.
4.已知椭圆C的中心在原点,离心率等于,它的一个短轴端点恰好是抛物线x2=8y的焦点.
(1)求椭圆C的方程;
(2)如图,已知P(2,3),Q(2,-3)是椭圆上的两点,A,B是椭圆上位于直线PQ两侧的动点.
①若直线AB的斜率为,求四边形APBQ面积的最大值;
②当A,B运动时,满足∠APQ=∠BPQ,试问直线AB的斜率是否为定值?请说明理由.
高考数学二轮复习课时跟踪检测 15圆锥曲线中的定点定值存在性问题大题练(含答案解析): 这是一份高考数学二轮复习课时跟踪检测 15圆锥曲线中的定点定值存在性问题大题练(含答案解析),共8页。试卷主要包含了已知椭圆C,设抛物线C,已知点M是椭圆C等内容,欢迎下载使用。
高考数学(理数)一轮复习:课时达标检测49《圆锥曲线中的定点、定值、存在性问题》(学生版): 这是一份高考数学(理数)一轮复习:课时达标检测49《圆锥曲线中的定点、定值、存在性问题》(学生版)
高考数学(理数)一轮复习:课时达标检测49《圆锥曲线中的定点、定值、存在性问题》(教师版): 这是一份高考数学(理数)一轮复习:课时达标检测49《圆锥曲线中的定点、定值、存在性问题》(教师版)