![真题汇总:2022年湖北省武汉市武昌区中考数学模拟考试 A卷(含答案及详解)01](http://img-preview.51jiaoxi.com/2/3/12673595/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![真题汇总:2022年湖北省武汉市武昌区中考数学模拟考试 A卷(含答案及详解)02](http://img-preview.51jiaoxi.com/2/3/12673595/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![真题汇总:2022年湖北省武汉市武昌区中考数学模拟考试 A卷(含答案及详解)03](http://img-preview.51jiaoxi.com/2/3/12673595/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
真题汇总:2022年湖北省武汉市武昌区中考数学模拟考试 A卷(含答案及详解)
展开考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、甲、乙两地相距s千来,汽车从甲地匀速行驶到乙地,行驶的时间t(小时)关于行驶速度v(千米时)的函数图像是( )
A.B.
C.D.
2、某三棱柱的三种视图如图所示,已知俯视图中,,下列结论中:①主视图中;②左视图矩形的面积为;③俯视图的正切值为.其中正确的个数为( )
A.个B.个C.个D.个
3、下列计算错误的是( )
A.B.C.D.
4、已知圆O的半径为3,AB、AC是圆O的两条弦,AB=3,AC=3,则∠BAC的度数是( )
A.75°或105°B.15°或105°C.15°或75°D.30°或90°
5、下列说法中,正确的有( )
①射线AB和射线BA是同一条射线;②若,则点B为线段AC的中点;③连接A、B两点,使线段AB过点C;④两点的所有连线中,线段最短.
A.0个B.1个C.2个D.3个
6、在实数范围内分解因式2x2﹣8x+5正确的是( )
A.(x﹣)(x﹣)B.2(x﹣)(x﹣)
C.(2x﹣)(2x﹣)D.(2x﹣4﹣)(2x﹣4+)
7、下列命题中,是真命题的是( )
A.一条线段上只有一个黄金分割点
B.各角分别相等,各边成比例的两个多边形相似
C.两条直线被一组平行线所截,所得的线段成比例
D.若2x=3y,则
8、有下列说法:①两条不相交的直线叫平行线;②同一平面内,过一点有且只有一条直线与已知直线垂直;③两条直线相交所成的四个角中,如果有两个角相等,那么这两条直线互相垂直;④有公共顶点的两个角是对顶角.其中说法正确的个数是( )
A.1B.2C.3D.4
9、下列方程组中,二元一次方程组有( )
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
①;②;③;④.
A.4个B.3个C.2个D.1个
10、为保护人民群众生命安全,减少交通事故,自2020年7月1日起,我市市民骑车出行必须严格遵守“一盔一带”规定,某头盔经销商经过统计发现:某品牌头盔从5月份到7月份销售量的月增长率相同,若5月份销售200个,7月份销售288个,设月增长率为x则可列出方程( )
A.200(+x)=288B.200(1+2x)=288
C.200(1+x)²=288D.200(1+x²)=288
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、深圳某商场为吸引顾客,设置了一种游戏,其规则如下:在一个不透明的纸箱中装有红球和白球共10个,这些球除颜色外都相同.凡参与游戏的顾客从纸箱中随机摸出一个球,如果摸到红球就可免费得到一个吉祥物,摸到白球没有吉祥物.据统计,参与这种游戏的顾客共有5000人,商场共发放了吉祥物1500个.则该纸箱中红球的数量约有 _____个.
2、一次函数y=﹣x+1的图象与反比例函数y=的图象交点的纵坐标为2,当﹣3<x<﹣1时,反比例函数y=中y的取值范围是 _____.
3、把一些笔分给几名学生,如果每人分5支,那么余7支;如果前面的学生每人分6支,那么最后一名学生能分到笔但分到的少于3支,则共有学生___人.
4、如图,将△ABC绕点A顺时针旋转,使点C落在边AB上的点E处,点B落在点D处,联结BD,如果∠DAC=∠DBA,那么∠BAC=___度.
5、方程(2x﹣1)2=25的解是 ___;
三、解答题(5小题,每小题10分,共计50分)
1、(数学认识)
数学是研究数量关系的一门学科,在初中几何学习的历程中,常常把角与角的数量关系转化为边与边的数量关系,把边与边的数量关系转化为角与角的数量关系.
(构造模型)
(1)如图①,已知△ABC,在直线BC上用直尺与圆规作点D,使得∠ADB=∠ACB.
(不写作法,保留作图痕迹)
(应用模型)
已知△ABC是⊙O的内接三角形,⊙O的半径为r,△ABC的周长为c.
(2)如图②,若r=5,AB=8,求c的取值范围.
(3)如图③,已知线段MN,AB是⊙O一条定长的弦,用直尺与圆规作点C,使得c=MN.(不写作法,保留作图痕迹)
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
2、计算:
(1)
(2)
3、如图,在四边形ABCD中,BA=BC,AC⊥BD,垂足为O.P是线段OD上的点(不与点O重合),把线段AP绕点A逆时针旋转得到AQ,∠OAP=∠PAQ,连接PQ,E是线段PQ的中点,连接OE交AP于点F.
(1)若BO=DO,求证:四边形ABCD是菱形;
(2)探究线段PO,PE,PF之间的数量关系.
4、(综合与实践)现实生活中,人们可以借助光源来测量物体的高度.已知榕树CD,FG和灯柱AB如图①所示,在灯柱AB上有一盏路灯P,榕树和灯柱的底端在同一水平线上,两棵榕树在路灯下都有影子,只要测量出其中一些数据,则可求出所需要的数据,具体操作步骤如下:
①根据光源确定榕树在地面上的影子;
②测量出相关数据,如高度,影长等;
③利用相似三角形的相关知识,可求出所需要的数据.
根据上述内容,解答下列问题:
(1)已知榕树CD在路灯下的影子为DE,请画出榕树FG在路灯下的影子GH;
(2)如图①,若榕树CD的高度为3.6米,其离路灯的距离BD为6米,两棵榕树的影长DE,GH均为4米,两棵树之间的距离DG为6米,求榕树FG的高度;
(3)无论太阳光还是点光源,其本质与视线问题相同.日常生活中我们也可以直接利用视线解决问题.如图②,建筑物CD高为50米,建筑物MF上有一个广告牌EM,合计总高度EF为70米,两座建筑物之间的直线距离FD为30米.一个观测者(身高不计)先站在A处观测,发现能看见广告牌EM的底端M处,观测者沿着直线AF向前走了5米到B处观测,发现刚好看到广告牌EM的顶端E处.则广告牌EM的高度为 米.
5、若关于x的一元二次方程有两个相等的实数根.
(1)用含m的代数式表示n;
(2)求的最小值.
-参考答案-
一、单选题
1、B
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【分析】
直接根据题意得出函数关系式,进而得出函数图象.
【详解】
解:由题意可得:t=,是反比例函数,
故只有选项B符合题意.
故选:B.
【点睛】
此题主要考查了反比例函数的应用,正确得出函数关系式是解题关键.
2、A
【分析】
过点A作AD⊥BC与D,根据BD=4,,可求AD=BD,根据,得出BC=7,可得DC=BC-BD=7-4=3可判断①;根据左视图矩形的面积为3×6=可判断②;根据tanC可判断③.
【详解】
解:过点A作AD⊥BC与D,
∵BD=4,,
∴AD=BD,
∵,
∴,
∴BC=7,
∴DC=BC-BD=7-4=3,
∴①主视图中正确;
∴左视图矩形的面积为3×6=,
∴②正确;
∴tanC,
∴③正确;
其中正确的个数为为3个.
故选择A.
【点睛】
本题考查三视图与解直角三角的应用相结合,掌握三视图,三角形面积公式,正切定义,矩形面积公式是解题关键,本题比较新颖,难度不大,是创新题型.
3、A
【分析】
直接利用二次根式的性质以及二次根式的乘法运算法则化简,进而判断即可.
【详解】
解:A.,故此选项计算错误,符合题意;
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
B.,故此选项计算正确,不合题意;
C.,故此选项计算正确,不合题意;
D.,故此选项计算正确,不合题意;
故选:A.
【点睛】
此题考查了二次根式的性质及二次根式的乘法运算法则,熟记乘法法则是解题的关键.
4、B
【分析】
根据题意画出图形,作出辅助线,由于AC与AB在圆心的同侧还是异侧不能确定,故应分两种情况进行讨论.
【详解】
解:分别作OD⊥AC,OE⊥AB,垂足分别是D、E.
∵OE⊥AB,OD⊥AB,
∴AE=AB=,AD=AC=,
∴,
∴∠AOE=45°,∠AOD=30°,
∴∠CAO=90°-30°=60°,∠BAO=90°-45°=45°,
∴∠BAC=45°+60°=105°,
同理可求,∠CAB′=60°-45°=15°.
∴∠BAC=15°或105°,
故选:B.
【点睛】
本题考查的是垂径定理及直角三角形的性质,解答此题时进行分类讨论,不要漏解.
5、B
【分析】
①射线有方向性,描述射线时的第1个字母表示它的端点,所以①不对.
②不明确A、B、C是否在同一条直线上.所以错误.
③不知道C是否在线段AB上,错误.
④两点之间线段最短,正确.
【详解】
①射线AB和射线BA的端点不同不是同一条射线.所以错误.
②若AB和BC为不在同一条直线的两条线段,B就不是线段AC的中点.所以错误.
③若C点不在线段AB两点的连线上,那么C点就无法过线段AB.所以错误.
④两点之间线段最短,所以正确.
故选:B.
【点睛】
本题考查了射线、线段中点的含义.解题的关键是根据两点之间线段最短,射线、线段的中点的定义,角平分线的定义对各小题分析判断即可得解.
6、B
【分析】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
解出方程2x2-8x+5=0的根,从而可以得到答案.
【详解】
解:∵方程2x2-8x+5=0中,a=2,b=-8,c=5,
∴Δ=(-8)2-4×2×5=64-40=24>0,
∴x=,
∴2x2-8x+5=2(x﹣)(x﹣),
故选:B.
【点睛】
本题考查了解一元二次方程,实数范围内分解因式,求出一元二次方程的根是解题的关键.
7、B
【分析】
根据黄金分割的定义对A选项进行判断;根据相似多边形的定义对B选项进行判断;根据平行线分线段成比例定理对C选项进行判断;根据比例的性质对D选项进行判断.
【详解】
解:A.一条线段上有两个黄金分割点,所以A选项不符合题意;
B.各角分别相等,各边成比例的两个多边形相似,所以B选项符合题意;
C.两条直线被一组平行线所截,所得的对应线段成比例,所以C选项不符合题意;
D.若2x=3y,则,所以D选项不符合题意.
故选:B.
【点睛】
本题考查了命题:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.
8、A
【分析】
根据平行线的定义、垂直的定义及垂线的唯一性、对顶角的含义即可判断.
【详解】
同一平面内不相交的两条直线叫做平行线,故说法①错误;说法②正确;两条直线相交所成的四个角中,如果有一个角是直角,那么这两条直线互相垂直,当这两个相等的角是对顶角时则不垂直,故说法③错误;根据对顶角的定义知,说法④错误;故正确的说法有1个;
故选:A
【点睛】
本题考查了两条直线的位置关系中的相关概念及性质,掌握这些概念是关键.
9、C
【分析】
组成二元一次方程组的两个方程应共含有两个相同的未知数,且未知数的项最高次数都应是一次的整式方程.
【详解】
解:①、符合二元一次方程组的定义,故①符合题意;
②、第一个方程与第二个方程所含未知数共有3个,故②不符合题意;
③、符合二元一次方程组的定义,故③符合题意;
④、该方程组中第一个方程是二次方程,故④不符合题意.
故选:.
【点睛】
本题考查了二元一次方程组的定义,解题时需要掌握二元一次方程组满足三个条件:①方程组中的两个方程都是整式方程.②方程组中共含有两个未知数.③每个方程都是一次方程.
10、C
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【分析】
设月增长率为x,根据等量关系用增长率表示7月份的销售量与销售288相等,可列出方程200(1+x)²=288即可.
【详解】
解:设月增长率为x,则可列出方程200(1+x)²=288.
故选C.
【点睛】
本题考查列一元二次方程解增长率问题应用题,掌握列一元二次方程解增长率问题应用题方法与步骤,抓住等量关系列方程是解题关键.
二、填空题
1、3
【分析】
先求出得到吉祥物的频率,再设纸箱中红球的数量为x个,根据题意列出方程,解之即可.
【详解】
解:由题意可得:
参与该游戏可免费得到吉祥物的频率为=,
设纸箱中红球的数量为x个,
则,
解得:x=3,
所以估计纸箱中红球的数量约为3个,
故答案为:3.
【点睛】
本题主要考查利用频率估计概率,大量重复试验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.
2、<y<2
【分析】
把一个交点的纵坐标是2代入y=-x+1求出横坐标为-1,把(-1,2)代入y=求出k,令-3<x<-1,求出y=的取值范围,即可求出y的取值范围.
【详解】
解:令y=2,则2=-x+1,
∴x=-1,
把(-1,2)代入y=,
解得:k=-2,
∴反比例函数为y=,
当x=-3时,代入y=得y=,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴x=-3时反比例函数的值为:,
当x=-1时,代入y=得y=2,
又知反比例函数y=在-3<x<-1时,y随x的增大而增大,
即当-3<x<-1时反比例函数y的取值范围为:<y<2.
【点睛】
本题考查了反比例函数与一次函数的交点及正比例函数与反比例函数的性质,难度不大,关键是掌握用待定系数法求解函数的解析式.
3、11或12
【分析】
根据每人分5支,那么余7支;如果前面的学生每人分6支,那么最后一名学生能分到笔但分到的少于3支,得出5x+7≥6(x-1)+1,且6(x-1)+3>5x+7,分别求出即可.
【详解】
解:假设共有学生x人,根据题意得出:
,
解得:10<x≤12.
因为x是正整数,所以符合条件的x的值是11或12,
故答案为:11或12.
【点睛】
此题主要考查了一元一次不等式组的应用,根据题意找出不等关系得出不等式组是解决问题的关键.
4、36
【分析】
设∠BAC=x,依据旋转的性质,可得∠DAE=∠BAC=x,∠ADB=∠ABD=2x,再根据三角形内角和定理即可得出x.
【详解】
解:设∠BAC=x,由旋转的性质,可得
∠DAE=∠BAC=x,
∴∠DAC=∠DBA=2x,
又∵AB=AD,
∴∠ADB=∠ABD=2x,
△ABD中,∠BAD+∠ABD+∠ADB=180°,
∴x+2x+2x=180°,
∴x=36°,
即∠BAC=36°,
故答案为:36.
【点睛】
本题主要考查了旋转的性质以及三角形内角和定理,解题时注意:旋转前、后的图形全等.
5、x1=3,x2=-2
【分析】
通过直接开平方求得2x-1=±5,然后通过移项、合并同类项,化未知数系数为1解方程.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【详解】
解:由原方程开平方,得
2x-1=±5,
则x=,
解得,x1=3,x2=-2.
故答案是:x1=3,x2=-2.
【点睛】
本题考查了解一元二次方程--直接开平方法.(1)用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.(2)运用整体思想,会把被开方数看成整体.(3)用直接开方法求一元二次方程的解,要仔细观察方程的特点.
三、解答题
1、(1)见解析;(2)16<c≤8+8;(3)见解析
【分析】
(1)可找到两个这样的点:①当点D在BC的延长线上时:以点C为圆心,AC长为半径,交BC的延长线于点D,连接AD,即为所求;②当点D在CB的延长线上时:以点A为圆心,AD长为半径,交CB的延长线于点,连接,即为所求;两种情况均可利用等腰三角形的性质及三角形外角的性质证明;
(2)考虑最极端的情况:当C与A或B重合时,则,可得此时,根据题意可得,当点C为优弧AB的中点时,连接AC并延长至D,使得,利用等腰三角形的性质及三角形外角性质可得点D的运动轨迹为一个圆,点C为优弧AB的中点时,点C即为外接圆的圆心,AC长为半径,连接CO并延长交AB于点E,连接AO,根据垂径定理及勾股定理可得,当AD为直径时,c最大即可得;
(3)依照(1)(2)的做法,方法一:第1步:作AB的垂直平分线交⊙O于点P;第2步:以点P为圆心,PA为半径作⊙P;第3步:在MN上截取AB的长度;第4步:以A为圆心,MN减去AB的长为半径画弧交⊙P于点E;第5步:连接AE交⊙O于点C,即为所求;方法二:第1步:在圆上取点D,连接AD、BD,延长AD使得;第2步:作的外接圆;第3步:在MN上截取AB的长度;第4步:以点A为圆心,MN减去AB的长为半径画弧交△ABE的外接圆于点F;第5步:连接AF交⊙O于点C,即为所求.
【详解】
(1)如图所示:①当点D在BC的延长线上时:以点C为圆心,AC长为半径,交BC的延长线于点D,连接AD,即为所求;②当点D在CB的延长线上时:以点A为圆心,AD长为半径,交CB的延长线于点,连接,即为所求;
证明:①∵,
∴,
∴;
同理可证明;
(2)当C与A或B重合时,则,
∴,
∵,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴,
如图,当点C为优弧AB的中点时,连接AC并延长至D,使得,
∴,
∵同弧所对的圆周角相等,
∴为定角,
∴为定角,
∴点D的运动轨迹为一个圆,当点C为优弧AB的中点时,点C即为外接圆的圆心,AC长为半径,连接CO并延长交AB于点E,连接AO,
由垂径定理可得:CE垂直平分AB,
∴,
在中,
,
∴,
∴,
∴AD为直径时最长,
∴最长,
∴的周长最长.
∴c最长为,
∴c的取值范围为:;
(3)方法一:
第1步:作AB的垂直平分线交⊙O于点P;
第2步:以点P为圆心,PA为半径作⊙P;
第3步:在MN上截取AB的长度;
第4步:以A为圆心,MN减去AB的长为半径画弧交⊙P于点E;
第5步:连接AE交⊙O于点C,即为所求;
方法二:
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
第1步:在圆上取点D,连接AD、BD,延长AD使得;
第2步:作的外接圆;
第3步:在MN上截取AB的长度;
第4步:以点A为圆心,MN减去AB的长为半径画弧交△ABE的外接圆于点F;
第5步:连接AF交⊙O于点C,即为所求.
【点睛】
题目主要考查等腰三角形的性质及三角形外角的性质,勾股定理,垂径定理,角的作法等,理解题意,综合运用各个知识点作图是解题关键.
2、
(1)原式
(2)原式
【分析】
(1)先算乘除,再算加减;
(2)先做括号内的运算,按小括号、中括号依次进行,然后先乘方,再乘除,最后再加减.
(1)
解:
原式
(2)
解:
原式
【点睛】
本题考查有理数的混合运算.应注意以下运算顺序:①先乘方,再乘除,最后加减;②同级运算,从左到右进行;③如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.
3、(1)见详解;(2)
【分析】
(1)根据线段垂直平分线的性质可知AB=AD,BC=CD,进而根据菱形的判定定理可求证;
(2)连接AE并延长,交BD的延长线于点G,连接FQ,由题意易得,则有,然后可得,则有,进而可得,然后证明,即有,最后根据勾股定理可求解.
【详解】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(1)证明:∵AC⊥BD,BO=DO,
∴AC垂直平分BD,
∴AB=AD,BC=CD,
∵BA=BC,
∴BA=AD=CD=BC,
∴四边形ABCD是菱形;
(2)解:,理由如下:
连接AE并延长,交BD的延长线于点G,连接FQ,如图所示:
由旋转的性质可得AP=AQ,
∵E是线段PQ的中点,
∴,
∵,,
∴,
∴,
∵,
∴,
∴,
设,
∵AP=AQ,E是线段PQ的中点,
∴,
∴,
∴,
∴,
∴,
∵,
∴(SAS),
∴,,
∴在Rt△QFP中,由勾股定理得:,
∵E是线段PQ的中点,
∴,
∴.
【点睛】
本题主要考查菱形的判定、等腰三角形的性质与判定、垂直平分线的性质定理、勾股定理及相似三角形的性质与判定,熟练掌握菱形的判定、等腰三角形的性质与判定、垂直平分线的性质定理、勾股定理及相似三角形的性质与判定是解题的关键.
4、
(1)见解析
(2)
(3)
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【分析】
(1)根据题意画出图形;
(2)证明△ECD∽△EPB,根据相似三角形的性质列出比例式,把已知数据代入计算即可;
(3)根据△BCD∽△BEF求出BD,再根据△ACD∽△AMF求出MF,进而求出EM.
【小题1】
解:图①中GH即为所求;
【小题2】
∵CD∥PB,
∴△ECD∽△EPB,
∴,即,
解得:PB=9,
∵FG∥PB,
∴△HFG∽△HPB,
∴,即,
解得:FG=,
答:榕树FG的高度为米;
【小题3】
∵CD∥EF,
∴△BCD∽△BEF,
∴,即,
解得:BD=75,
∵CD∥EF,
∴△ACD∽△AMF,
∴,即,
解得:MF=,
∴EM=EF-MF=70-=(米),
故答案为:.
【点睛】
本题考查的相似三角形的判定和性质的应用,掌握相似三角形的判定定理和性质定理是解题的关键.
5、
(1)
(2)
【分析】
(1)由两个相等的实数根知,整理得n的含m的代数式.
(2)对进行配方,然后求最值即可.
(1)
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
解:由题意知
∴
(2)
解:
∵
∴当时,的值最小,为
∴的最小值为.
【点睛】
本题考查了一元二次方程的根,一元二次代数式的最值.解题的关键在于配完全平方.
【历年真题】2022年湖北省武汉市武昌区中考数学真题汇总 卷(Ⅱ)(含答案及解析): 这是一份【历年真题】2022年湖北省武汉市武昌区中考数学真题汇总 卷(Ⅱ)(含答案及解析),共26页。试卷主要包含了已知和是同类项,那么的值是,多项式去括号,得,观察下列图形等内容,欢迎下载使用。
【真题汇总卷】2022年湖北省武汉市武昌区中考数学模拟测评 卷(Ⅰ)(含答案详解): 这是一份【真题汇总卷】2022年湖北省武汉市武昌区中考数学模拟测评 卷(Ⅰ)(含答案详解),共21页。试卷主要包含了抛物线的顶点坐标是,下列利用等式的性质,错误的是,已知圆O的半径为3,AB,有下列说法等内容,欢迎下载使用。
【真题汇总卷】2022年湖北省武汉市武昌区中考数学备考真题模拟测评 卷(Ⅰ)(含答案详解): 这是一份【真题汇总卷】2022年湖北省武汉市武昌区中考数学备考真题模拟测评 卷(Ⅰ)(含答案详解),共20页。试卷主要包含了下列命题中,是真命题的是,已知圆O的半径为3,AB等内容,欢迎下载使用。