模拟测评:2022年重庆市永川区中考数学历年真题汇总 卷(Ⅲ)(含答案及解析)
展开这是一份模拟测评:2022年重庆市永川区中考数学历年真题汇总 卷(Ⅲ)(含答案及解析),共25页。试卷主要包含了下列说法中错误的是,下列各对数中,相等的一对数是等内容,欢迎下载使用。
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、对于反比例函数,下列结论错误的是( )
A.函数图象分布在第一、三象限
B.函数图象经过点(﹣3,﹣2)
C.函数图象在每一象限内,y的值随x值的增大而减小
D.若点A(x1,y1),B(x2,y2)都在函数图象上,且x1<x2,则y1>y2
2、若(mx+8)(2﹣3x)中不含x的一次项,则m的值为( )
A.0B.3C.12D.16
3、如图,中,,,,,平分,如果点,分别为,上的动点,那么的最小值是( )
A.6B.8C.10D.4.8
4、神舟号载人飞船于2021年10月16日凌晨成功对接中国空间站,自升空以来神舟十三号飞船每天绕地球16圈,按地球赤道周长计算神舟十三号飞船每天飞行约641200千米,641200用科学记数法表示为( )
A.B.C.D.
5、下列说法中错误的是( )
A.若,则B.若,则
C.若,则D.若,则
6、一个两位数,十位上的数字是x,个位上的数字比十位上的数字的3倍少4,这个两位数可以表示为( )
A.x(3x-4)B.x(3x+4)C.13x+4D.13x-4
7、如图,在矩形ABCD中,点E在CD边上,连接AE,将沿AE翻折,使点D落在BC边的点F处,连接AF,在AF上取点O,以O为圆心,线段OF的长为半径作⊙O,⊙O与AB,AE分别相切于点G,H,连接FG,GH.则下列结论错误的是( )
A.B.四边形EFGH是菱形
C.D.
8、已知线段AB=7,点C为直线AB上一点,且AC∶BC=4∶3,点D为线段AC的中点,则线段BD的长为( )
A.5或18.5B.5.5或7C.5或7D.5.5或18.5
9、下列各对数中,相等的一对数是( )
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
A.与B.与C.与D.与
10、的计算结果是( )
A.B.C.D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、的根为____________.
2、已知点P(3m﹣6,m+1),A(﹣1,2),直线PA与x轴平行,则点P的坐标为_____.
3、在,,,,中,负数共有______个.
4、已知代数式的值是2,则代数式的值为______.
5、如果有意义,那么x的取值范围是________.
三、解答题(5小题,每小题10分,共计50分)
1、在中,,,点E在射线CB上运动.连接AE,将线段AE绕点E顺时针旋转90°得到EF,连接CF.
(1)如图1,点E在点B的左侧运动.
①当,时,则___________°;
②猜想线段CA,CF与CE之间的数量关系为____________.
(2)如图2,点E在线段CB上运动时,第(1)问中线段CA,CF与CE之间的数量关系是否仍然成立?如果成立,请说明理由;如果不成立,请求出它们之间新的数量关系.
2、(1)先化简再求值:,其中.
(2)解方程:.
3、如图,在平面直角坐标系中,△ABC三个顶点的坐标为A(1,2),B(4,1),C(2,4).
(1)在图中画出△ABC关于y轴对称的图形△A′B′C′;并写出点B′的坐标.
(2)在图中x轴上作出一点P,使PA+PB的值最小.
4、解方程:
(1);
(2).
5、对于平面直角坐标系xOy中的图形M,N,给出如下定义:若图形M和图形N有且只有一个公共点P,则称点P是图形M和图形N的“关联点”.
已知点,,,.
(1)直线l经过点A,的半径为2,在点A,C,D中,直线l和的“关联点”是______;
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(2)G为线段OA中点,Q为线段DG上一点(不与点D,G重合),若和有“关联点”,求半径r的取值范围;
(3)的圆心为点,半径为t,直线m过点A且不与x轴重合.若和直线m的“关联点”在直线上,请直接写出b的取值范围.
-参考答案-
一、单选题
1、D
【分析】
根据反比例函数的性质得出函数增减性以及所在象限和经过的点的特点分别分析得出即可.
【详解】
解:A、∵k=6>0,∴图象在第一、三象限,故A选项正确;
B、∵反比例函数,∴xy=6,故图象经过点(-3,-2),故B选项正确;
C、∵k>0,∴x>0时,y随x的增大而减小,故C选项正确;
D、∵不能确定x1和x2大于或小于0
∴不能确定y1、y2的大小,故错误;
故选:D.
【点睛】
本题考查了反比例函数(k≠0)的性质:①当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.
2、C
【分析】
先计算多项式乘以多项式得到结果为,结合不含的一次项列方程,从而可得答案.
【详解】
解:(mx+8)(2﹣3x)
(mx+8)(2﹣3x)中不含x的一次项,
解得:
故选C
【点睛】
本题考查的是多项式乘法中不含某项,掌握“多项式乘法中不含某项即某项的系数为0”是解题的关键.
3、D
【分析】
如图所示:过点作于点,交于点,过点作于点,则,此时最小,再利用等面积法求解最小值即可.
【详解】
解:如图所示:
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
过点作于点,交于点,
过点作于点,
平分,
,
.
在中,,,,,,
,
,
.
即的最小值是4.8,
故选:D.
【点睛】
本题考查的是垂线段最短,角平分线的性质定理的应用,等面积法的应用,确定取最小值时点的位置是解本题的关键.
4、B
【分析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.
【详解】
解:641200用科学记数法表示为:641200=,
故选择B.
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
5、C
【分析】
根据不等式的性质进行分析判断.
【详解】
解:A、若,则,故选项正确,不合题意;
B、若,则,故选项正确,不合题意;
C、若,若c=0,则,故选项错误,符合题意;
D、若,则,故选项正确,不合题意;
故选C.
【点睛】
本题考查了不等式的性质.解题的关键是掌握不等式的性质:①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.
6、D
【分析】
因为两位数十位数字个位数字,所以求得个位数字是,可得这个两位数可表示为.
【详解】
解:十位上的数字是x,个位上的数字比十位上的数字的3倍少4,
个位数字是,
这个两位数可表示为,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
故选:D.
【点睛】
本题考查了列代数式,解题的关键是掌握两位数的表示方法.
7、C
【分析】
由折叠可得∠DAE=∠FAE,∠D=∠AFE=90°,EF=ED,再根据切线长定理得到AG=AH,∠GAF=∠HAF,进而求出∠GAF=∠HAF=∠DAE=30°,据此对A作出判断;接下来延长EF与AB交于点N,得到EF是⊙O的切线,ANE是等边三角形,证明四边形EFGH是平行四边形,再结合HE=EF可对B作出判断;在RtEFC中,∠C=90°,∠FEC=60°,则EF=2CE,再结合AD=DE对C作出判断;由AG=AH,∠GAF=∠HAF,得出GH⊥AO,不难判断D.
【详解】
解:由折叠可得∠DAE=∠FAE,∠D=∠AFE=90°,EF=ED.
∵AB和AE都是⊙O的切线,点G、H分别是切点,
∴AG=AH,∠GAF=∠HAF,
∴∠GAF=∠HAF=∠DAE=30°,
∴∠BAE=2∠DAE,故A正确,不符合题意;
延长EF与AB交于点N,如图:
∵OF⊥EF,OF是⊙O的半径,
∴EF是⊙O的切线,
∴HE=EF,NF=NG,
∴△ANE是等边三角形,
∴FG//HE,FG=HE,∠AEF=60°,
∴四边形EFGH是平行四边形,∠FEC=60°,
又∵HE=EF,
∴四边形EFGH是菱形,故B正确,不符合题意;
∵AG=AH,∠GAF=∠HAF,
∴GH⊥AO,故D正确,不符合题意;
在Rt△EFC中,∠C=90°,∠FEC=60°,
∴∠EFC=30°,
∴EF=2CE,
∴DE=2CE.
∵在Rt△ADE中,∠AED=60°,
∴AD=DE,
∴AD=2CE,故C错误,符合题意.
故选C.
【点睛】
本题是一道几何综合题,考查了切线长定理及推论,切线的判定,菱形的定义,含30的直角三角形的性质,等边三角形的判定和性质,翻折变换等,正确理解翻折变换及添加辅助线是解决本题的关键.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
8、C
【分析】
根据题意画出图形,再分点C在线段AB上或线段AB的延长线上两种情况进行讨论.
【详解】
解:点C在线段AB上时,如图:
∵AB=7,AC∶BC=4∶3,
∴AC=4,BC=3,
∵点D为线段AC的中点,
∴AD=DC=2,
∴BD=DC+BC=5;
点C在线段AB的延长线上时,
∵AB=7,AC∶BC=4∶3,
设BC=3x,则AC=4x,
∴AC-BC=AB,即4x-3x=7,
解得x=7,
∴BC=21,则AC=28,
∵点D为线段AC的中点,
∴AD=DC=14,
∴BD=AD-AB=7;
综上,线段BD的长为5或7.
故选:C.
【点睛】
本题考查了两点间的距离,线段中点的定义,利用线段的比例得出AC、BC的长是解题关键,要分类讨论,以防遗漏.
9、C
【分析】
先化简,再比较即可.
【详解】
A. ∵=1,=-1,∴≠,故不符合题意;
B. ∵=-1,=1,∴≠,故不符合题意;
C. ∵=-1,=-1,∴=,故符合题意;
D. ∵=,=,∴≠,故不符合题意;
故选C.
【点睛】
本题考查了有理数的乘方,绝对值,有理数的大小比较,正数大于0,负数小于0,正数大于一切负数,两个负数,绝对值大的反而小.正确化简各数是解答本题的关键.
10、D
【分析】
原式化为,根据平方差公式进行求解即可.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【详解】
解:
故选D.
【点睛】
本题考查了平方差公式的应用.解题的关键与难点在于应用平方差公式.
二、填空题
1、,
【分析】
移项后再因式分解求得两个可能的根.
【详解】
解:,
,
x=0或x-1=0,
解得,,
故答案为:,.
【点睛】
本题考查一元二次方程解法中的因式分解法,掌握因式分解是本题关键.
2、(﹣3,2)
【分析】
由题意知m+1=2,得m的值;将m代入求点P的坐标即可.
【详解】
解:∵点P(3m﹣6,m+1)在过点A(﹣1,2)且与x轴平行的直线上
∴m+1=2
解得m=1
∴3m﹣6=3×1﹣6=﹣3
∴点P的坐标为(﹣3,2)
故答案为:(﹣3,2).
【点睛】
本题考查了直角坐标系中与x轴平行的直线上点坐标的关系.解题的关键在于明确与x轴平行的直线上点坐标的纵坐标相等.
3、3
【分析】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
将各数化简,即可求解.
【详解】
解:∵,,,,,
∴负数有,,,共3个.
故答案为:3
【点睛】
本题主要考查了乘方的运算,绝对值的性质,有理数的分类,熟练掌握乘方的运算,绝对值的性质,有理数的分类是解题的关键.
4、-1
【分析】
把变形为,然后把=2代入计算.
【详解】
解:∵代数式的值是2,
∴=2,
∴==3-4=-1.
故答案为:-1.
【点睛】
此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算,也可以运用整体代入的思想,本题就利用了整体代入进行计算.
5、且
【分析】
根据被开方数大于等于0,分母不等于0列式计算即可得解.
【详解】
解:由题意得,x+1≥0且x≠0,
解得x≥−1且x≠0,
故答案为:且.
【点睛】
本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.
三、解答题
1、
(1)①;②
(2)不成立,
【分析】
(1)①由直角三角形的性质可得出答案;
②过点E作ME⊥EC交CA的延长线于M,由旋转的性质得出AE=EF,∠AEF=90°,得出∠AEM=∠CEF,证明△FEC≌△AEM(SAS),由全等三角形的性质得出CF=AM,由等腰直角三角形的性质可得出结论;
(2)过点F作FH⊥BC交BC的延长线于点H.证明△ABE≌△EHF(AAS),由全等三角形的性质得出FH=BE,EH=AB=BC,由等腰直角三角形的性质可得出结论;
(1)
①∵,,,
∴,
∵sin∠EAB=
∴,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
故答案为:30°;
②.
如图1,过点E作交CA的延长线于M,
∵,,
∴,∴,
∴,
∴,
∵将线段AE绕点E顺时针旋转90°得到EF,
∴,,
∴,
在△FEC和△AEM中
,
∴,
∴,
∴,
∵为等腰直角三角形,
∴,
∴;
故答案为:;
(2)
不成立.
如图2,过点F作交BC的延长线于点H.
∴,,
∵,
∴,
在△FEC和△AEM中
,
∴,
∴,,
∴,
∴为等腰直角三角形,
∴.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
又∵,
即.
【点睛】
本题考查了旋转的性质,解直角三角形,等腰直角三角形的判定与性质,全等三角形的判定与性质,三角形的面积,熟练掌握旋转的性质是解题的关键.
2、(1),;(2)无解
【分析】
(1)根据分式的各运算法则进行化简,再代入计算即可;
(2)根据分式方程的解法进行求解即可.
【详解】
解:(1)
,
当时,原式;
(2),
方程两边都乘,得,
解得:,
检验:当时,,所以是原方程的增根,
即原方程无解.
【点睛】
本题考查了分式的化简求值,解分式方程,熟练掌握各运算法则是解题的关键.
3、(1)作图见解析,点B′的坐标为(-4,1);(2)见解析
【分析】
(1)分别作出三个顶点关于y轴的对称点,再首尾顺次连接即可得;
(2)作出点A关于x轴的对称点A″,再连接A″B,与x轴的交点即为所求.
【详解】
解:(1)如图所示,△A′B′C′即为所求.
点B′的坐标为(-4,1);
(2)如图所示,点P即为所求.
【点睛】
本题主要考查了作图-轴对称变换,解题的关键是掌握轴对称变换的定义与性质,并据此得出变换后· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
的对应点.注意:关于y轴对称的点,纵坐标相同,横坐标互为相反数.
4、
(1)
(2)
【分析】
(1)先去括号,再移项合并同类项,即可求解;
(2)先去分母,再去括号,然后移项合并同类项,即可求解.
(1)
解:去括号得:
移项合并同类项得:
解得:;
(2)
解:去分母得:
去括号得: ,
移项合并同类项得:
解得:.
【点睛】
本题主要考查了解一元一次方程,熟练掌握解一元一次方程的基本步骤是解题的关键.
5、
(1)C
(2)
(3)
【分析】
(1)作出图形,根据切线的定义结合“关联点”即可求解;
(2)根据题意,为等边三角形,则仅与相切时,和有“关联点”,进而求得半径r的取值范围;
(3)根据关联点以及切线的性质,直径所对的角是直角,找到点的运动轨迹是以为圆心半径为的半圆在轴上的部分,进而即可求得的值.
(1)
解:如图,
,,,,
,轴,.
的半径为2,
直线与相切
直线l和的“关联点”是点
故答案为:
(2)
如图,根据题意与有“关联点”,则与相切,且与相离
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
,
是等边三角形
为的中点,则
当与相切时,则点为的内心
半径r的取值范围为:
(3)
如图,设和直线m的“关联点”为,,交轴于点,
是的切线,
的圆心为点,半径为t,
轴是的切线
点的运动轨迹是以为圆心半径为的半圆在轴上的部分,则点,
在直线上,
当直线与相切时,即当点与点重合时,最大,
此时与轴交于点,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
当点运动到点时,则过点,
则
解得
b的取值范围为:
【点睛】
本题考查了切线的性质与判定,切线长定理,勾股定理,一次函数与坐标轴交点问题,等边三角形的性质,等边三角形的内心的性质,掌握以上知识是解题的关键.
相关试卷
这是一份【真题汇总卷】2022年重庆市九龙坡区中考数学真题模拟测评 (A)卷(含答案及解析),共26页。
这是一份【真题汇编】2022年重庆市永川区中考数学模拟真题测评 A卷(含详解),共21页。试卷主要包含了已知线段AB,下列说法正确的有,若,则值为,下列各对数中,相等的一对数是,若,则的值为等内容,欢迎下载使用。
这是一份【历年真题】2022年上海市普陀区中考数学真题模拟测评 (A)卷(含答案及解析),共29页。试卷主要包含了下列图形是中心对称图形的是.,下列说法中,不正确的是,下列式中,与是同类二次根式的是,下列判断错误的是等内容,欢迎下载使用。