【高频真题解析】2022年北京市门头沟区中考数学真题模拟测评 (A)卷(含答案详解)
展开2022年北京市门头沟区中考数学真题模拟测评 (A)卷
考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,五边形中,,CP,DP分别平分,,则( )
A.60° B.72° C.70° D.78°
2、已知关于x的不等式组的解集是3≤x≤4,则a+b的值为( )
A.5 B.8 C.11 D.9
3、有理数a,b在数轴上的对应点的位置如图所示,则正确的结论是( )
A. B. C. D.
4、要使式子有意义,则( )
A. B. C. D.
5、抛物线的顶点坐标是( )
A. B. C. D.
6、如图,已知双曲线 经过矩形 边 的中点 且交 于 ,四边形 的面积为 2,则
A.1 B.2 C.4 D.8
7、已知抛物线的对称轴为直线,与轴的一个交点坐标为,其部分图象如图所示,下列结论中:①;②;③抛物线与轴的另一个交点的坐标为;④方程有两个不相等的实数根.其中正确的个数为( )
A.个 B.个 C.个 D.个
8、下列一元二次方程有两个相等的实数根的是( )
A. B.
C. D.
9、如图所示,由A到B有①、②、③三条路线,最短的路线选①的理由是( )
A.两点确定一条直线 B.经过一点有无数条直线
C.两点之间,线段最短 D.一条线段等于已知线段
10、下图中能体现∠1一定大于∠2的是( )
A. B.
C. D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、用幂的形式表示:=________.
2、方程x(2x﹣1)=2x﹣1的解是 ___;
3、计算:_________,_________,_________.分解因式:_________,_________,________.
4、把一些笔分给几名学生,如果每人分5支,那么余7支;如果前面的学生每人分6支,那么最后一名学生能分到笔但分到的少于3支,则共有学生___人.
5、不等式的最大整数解是_______.
三、解答题(5小题,每小题10分,共计50分)
1、综合与实践
如图1,在综合实践课上,老师让学生用两个等腰直角三角形进行图形的旋转探究.在中,,,在中,,,点,分别在,边行,直角顶点重合在一起,将绕点逆时针旋转,设旋转角,其中.
(1)当点落在上时,如图2:
①请直接写出的度数为______(用含的式子表示);
②若,,求的长;
(2)如图3,连接,,并延长交于点,请判断与的位置关系,并加以证明;
(3)如图4,当与是两个相等钝角时,其他条件不变,即在与中,,,,,则的度数为______(用含或的式子表示).
2、A、B两地相距25km,甲上午8点由A地出发骑自行车去B地,乙上午9点30分由A地出发乘汽车去B地.
(1)若乙的速度是甲的速度的4倍,两人同时到达B地,请问两人的速度各是多少?
(2)已知甲的速度为,若乙出发半小时后还未追上甲,此时甲、乙两人的距离不到,判断乙能否在途中超过甲,请说明理由.
3、计算:
4、在光明中学开展的读书月活动中,七一班数学兴趣小组调查了七年级部分学生平均每天读书的时间(单位:分钟),根据统计结果制成了下列不完整的频数直方图和扇形统计图.请结合图中信息回答下列问题:
(1)本次调查的学生人数为___________.
(2)补全频数直方图.
(3)根据以上调查,兴趣小组想制作倡议书发放给七年级平均每天读书的时间低于30分钟的学生,已知七年级一共有300名学生,请估计该兴趣小组需要制作多少份倡议书.并为读书的时间低于30分钟的学生同学提出一条合理建议.
5、如图,已知点A、C分别是∠B两边上的定点.
(1)求作:线段CD,使得DC∥AB,且,点D在点C的右侧;(要求:尺规作图,不写作法,但要保留作图痕迹.)
(2)M是BC的中点,求证:点A、M、D三点在同一直线上.
-参考答案-
一、单选题
1、C
【分析】
根据五边形的内角和等于,由,可求的度数,再根据角平分线的定义可得与的角度和,进一步求得的度数.
【详解】
解:五边形的内角和等于,,
,
、的平分线在五边形内相交于点,
,
.
故选:C.
【点睛】
本题主要考查了多边形的内角和公式,角平分线的定义,解题的关键是熟记公式,注意整体思想的运用.
2、C
【分析】
分别求出每一个不等式的解集,结合不等式组的解集求出a、b的值,代入计算即可.
【详解】
解:解不等式x-a≥1,得:x≥a+1,
解不等式x+5≤b,得:x≤b-5,
∵不等式组的解集为3≤x≤4,
∴a+1=3,b-5=4,
∴a=2,b=9,
则a+b=2+9=11,
故选:C.
【点睛】
本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
3、C
【分析】
由数轴可得: 再逐一判断的符号即可.
【详解】
解:由数轴可得:
故A,B,D不符合题意,C符合题意;
故选C
【点睛】
本题考查的是利用数轴比较有理数的大小,绝对值的含义,有理数的加法,减法,乘法的结果的符号确定,掌握以上基础知识是解本题的关键.
4、B
【分析】
根据分式有意义的条件,分母不为0,即可求得答案.
【详解】
解:要使式子有意义,
则
故选B
【点睛】
本题考查了分式有意义的条件,理解分式有意义的条件是“分母不为0”是解题的关键.
5、A
【分析】
根据二次函数y=a(x-h)2+k的性质解答即可.
【详解】
解:抛物线的顶点坐标是,
故选A.
【点睛】
本题考查了二次函数y=a(x-h)2+k(a,h,k为常数,a≠0)的性质,熟练掌握二次函数y=a(x-h)2+k的性质是解答本题的关键. y=a(x-h)2+k是抛物线的顶点式,a决定抛物线的形状和开口方向,其顶点是(h,k),对称轴是x=h.
6、B
【分析】
利用反比例函数图象上点的坐标,设,则根据F点为AB的中点得到.然后根据反比例函数系数k的几何意义,结合,即可列出,解出k即可.
【详解】
解:设,
∵点F为AB的中点,
∴.
∵,
∴,即,
解得:.
故选B.
【点睛】
本题考查反比例函数的k的几何意义以及反比例函数上的点的坐标特点、矩形的性质,掌握比例系数k的几何意义是在反比例函数图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|是解答本题的关键.
7、C
【分析】
根据对称轴及抛物线与轴交点情况进行推理,进而对所得结论进行判断.
【详解】
解:①如图,开口向上,得,
,得,
抛物线与轴交于负半轴,即,
,
故①错误;
②如图,抛物线与轴有两个交点,则;
故②正确;
③由对称轴是直线,抛物线与轴的一个交点坐标为,得到:抛物线与轴的另一个交点坐标为,
故③正确;
④如图所示,当时,,
根的个数为与图象的交点个数,
有两个交点,即有两个根,
故④正确;
综上所述,正确的结论有3个.
故选:C.
【点睛】
主要考查抛物线与轴的交点,二次函数图象与二次函数系数之间的关系,解题的关键是会利用对称轴的范围求与的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.
8、B
【分析】
根据一元二次方程根的判别式判断即可.
【详解】
解:、△,
方程有两个不等实数根,不符合题意;
、△,
方程有两个相等实数根,符合题意;
、△,
方程有两个不相等实数根,不符合题意;
、△,
方程没有实数根,不符合题意;
故选:B.
【点睛】
本题考查了一元二次方程根的判别式,解题的关键是掌握一元二次方程根的情况与判别式△的关系:(1)△方程有两个不相等的实数根;(2)△方程有两个相等的实数根;(3)△方程没有实数根.
9、C
【分析】
根据线段的性质进行解答即可.
【详解】
解:最短的路线选①的理由是两点之间,线段最短,
故选:C.
【点睛】
本题主要考查了线段的性质,解题的关键是掌握两点之间,线段最短.
10、C
【分析】
由对顶角的性质可判断A,由平行线的性质可判断B,由三角形的外角的性质可判断C,由直角三角形中同角的余角相等可判断D,从而可得答案.
【详解】
解:A、∠1和∠2是对顶角,∠1=∠2.故此选项不符合题意;
B、如图,
若两线平行,则∠3=∠2,则
若两线不平行,则大小关系不确定,所以∠1不一定大于∠2.故此选项不符合题意;
C、∠1是三角形的外角,所以∠1>∠2,故此选项符合题意;
D、根据同角的余角相等,可得∠1=∠2,故此选项不符合题意.
故选:C.
【点睛】
本题考查的是对顶角的性质,平行线的性质,直角三角形中两锐角互余,三角形的外角的性质,同角的余角相等,掌握几何基本图形,基本图形的性质是解本题的关键.
二、填空题
1、
【分析】
根据分数指数幂的意义,利用(m、n为正整数)得出即可.
【详解】
解:.
故答案是:.
【点睛】
本题考查了分数指数幂,解决本题的关键是熟记分数指数幂的定义.
2、x1=,x2=1
【分析】
移项后提公因式,然后解答.
【详解】
解:移项,得x(2x-1)-(2x-1)=0,
提公因式,得,(2x-1)(x-1)=0,
解得2x-1=0,x-1=0,
x1=,x2=1.
故答案为:x1=,x2=1.
【点睛】
本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.
3、
【分析】
根据幂的乘方运算,负整数指数幂,单项式的除法运算,公式法因式分解,提公因式法因式分解分别计算即可
【详解】
解:计算:,,.
分解因式:,,.
故答案为:;;;;;
【点睛】
本题考查了幂的乘方运算,负整数指数幂,单项式的除法运算,公式法因式分解,提公因式法因式分解,掌握以上运算法则和因式分解的方法是解题的关键.
4、11或12
【分析】
根据每人分5支,那么余7支;如果前面的学生每人分6支,那么最后一名学生能分到笔但分到的少于3支,得出5x+7≥6(x-1)+1,且6(x-1)+3>5x+7,分别求出即可.
【详解】
解:假设共有学生x人,根据题意得出:
,
解得:10<x≤12.
因为x是正整数,所以符合条件的x的值是11或12,
故答案为:11或12.
【点睛】
此题主要考查了一元一次不等式组的应用,根据题意找出不等关系得出不等式组是解决问题的关键.
5、2
【分析】
首先根据不等式求解不等式,再根据不等式的解集写出最大的整数解.
【详解】
解:移项,得:,
合并同类项,得:,
系数化成1得:,
则最大整数解是:2.
故答案是:2.
【点睛】
本题主要考查不等式的整数解,关键在于求解不等式.
三、解答题
1、(1)①;②;(2),证明见解析;(3)
【分析】
(1)①由等腰直角三角形得,,故可求出;
②过点M作于点,设,则,由,得是等腰直角三角形,得出,即可求出x的值,由勾股定理即可得出答案;
(2)设与相交于点,由旋转得,根据SAS证明,由全等三角形的性质得,由得即,故可证;
(3)设与相交于点,同(2)得,故,即可求.
【详解】
(1)①∵,都是等腰直角三角形,
∴,,
∵,
∴,
∴;
②
如图2,作于点,
设,
∵,,
∴,
∴,
∴,
在中,,
∵,
∴,
∴,
∴,
∴,,
∴;
(2),证明如下:
如图3,设与相交于点,
由旋转可知:,
∵,,
∴,
∴,
∵,
∴即,
∴,
∴;
(3)如图4,
设与相交于点,同(2)得,
∴,
.
【点睛】
本题考查等腰三角形的判定与性质,全等三角形的判定与性质,掌握相关知识点间的应用是解题的关键.
2、
(1)甲的速度是12.5千米/时,乙的速度是50千米/时;
(2)乙能在途中超过甲.理由见解析
【分析】
(1)设甲的速度是x千米/时,乙的速度是4x千米/时,根据A、B两地相距25千米,甲骑自行车从A地出发到B地,出发1.5小时后,乙乘汽车也从A地往B地,且两人同时到达B地,可列分式方程求解;
(2)根据乙出发半小时后还未追上甲,此时甲、乙两人的距离不到,列不等式组求得乙的速度范围,进步计算即可判断.
(1)
解:设甲的速度是x千米/时,乙的速度是4x千米/时,
由题意,得,
解得x=12.5,
经检验x=12.5是分式方程的解,
12.5×4=50.
答:甲的速度是12.5千米/时,乙的速度是50千米/时;
(2)
解:乙能在途中超过甲.理由如下:
设乙的速度是y千米/时,
由题意,得,
解得:44<y<48,
甲走完全程花时间:小时,则乙的时间为:小时,
∴乙小时走的路程s为:×44<s<×48,即25<s<28,
∴乙能在途中超过甲.
【点睛】
本题考查了分式方程的应用,一元一次不等式的应用,解题的关键是理解题意,找到题目蕴含的相等和不等关系,并据此列出方程和不等式组.
3、
【分析】
原式各项化为最简二次根式,去括号合并即可得到结果.
【详解】
解:原式
.
【点睛】
此题考查了二次根式的加减法,涉及的知识有:二次根式的化简,去括号法则,以及合并同类二次根式法则,熟练掌握法则是解本题的关键.
4、
(1)60
(2)见解析
(3)30,开卷有益,要养成阅读的好习惯(答案不唯一)
【分析】
(1)平均每天读书的时间10—30分钟的人数除以所占的百分比,即可求解;
(2)用总人数乘以平均每天读书的时间30—50分钟所占的百分比,即可求解;
(3)用300乘以平均每天读书的时间10—30分钟所占的百分比,即可求解.
(1)
解:本次调查的学生人数为名;
(2)
解:平均每天读书的时间30—50分钟的人数为名,
补全频数直方图如下图:
(3)
解:份.
建议:开卷有益,要养成阅读的好习惯
【点睛】
本题主要考查了条形统计图和扇形统计图,能准确从统计图信息是解题的关键.
5、
(1)见解析
(2)见解析
【分析】
(1)根据题意作,则,在射线上截取,则点即为所求;
(2)连接,设与交于点,证明,可得,则重合,即过点,即可证明点A、M、D三点在同一直线上
(1)
如图所示,点即为所求
(2)
如图,连接,设与交于点,
,
又
又是的中点
重合
过点,
即点A、M、D三点在同一直线上
【点睛】
本题考查了作一个角等于已知角,作线段等于已知线段,三角形全等的性质与判定,平行线的判定,掌握基本作图是解题的关键.
【高频真题解析】2022年中考数学真题模拟测评 (A)卷(含答案详解): 这是一份【高频真题解析】2022年中考数学真题模拟测评 (A)卷(含答案详解),共22页。试卷主要包含了计算3.14-的结果为 .,不等式+1<的负整数解有,下列分式中,最简分式是,下列解方程的变形过程正确的是,下列等式成立的是等内容,欢迎下载使用。
【真题汇总卷】2022年北京市中考数学备考真题模拟测评 卷(Ⅰ)(含答案详解): 这是一份【真题汇总卷】2022年北京市中考数学备考真题模拟测评 卷(Ⅰ)(含答案详解),共18页。试卷主要包含了下列图形是中心对称图形的是.,已知4个数,如图,在中,,,则的值为,如图,点C等内容,欢迎下载使用。
【真题汇编】2022年北京市门头沟区中考数学备考真题模拟测评 卷(Ⅰ)(含详解): 这是一份【真题汇编】2022年北京市门头沟区中考数学备考真题模拟测评 卷(Ⅰ)(含详解),共17页。试卷主要包含了下列说法正确的是,观察下列图形等内容,欢迎下载使用。