搜索
    上传资料 赚现金
    2022年高考数学(理数)一轮复习课时作业42《直线、平面垂直的判定及其性质》(教师版) 练习
    立即下载
    加入资料篮
    2022年高考数学(理数)一轮复习课时作业42《直线、平面垂直的判定及其性质》(教师版) 练习01
    2022年高考数学(理数)一轮复习课时作业42《直线、平面垂直的判定及其性质》(教师版) 练习02
    2022年高考数学(理数)一轮复习课时作业42《直线、平面垂直的判定及其性质》(教师版) 练习03
    还剩5页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年高考数学(理数)一轮复习课时作业42《直线、平面垂直的判定及其性质》(教师版)

    展开
    这是一份2022年高考数学(理数)一轮复习课时作业42《直线、平面垂直的判定及其性质》(教师版),共8页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    课时作业42 直线、平面垂直的判定及其性质

    一、选择题

    1.设αβ为两个不同的平面,直线l⊂α,则l⊥β”“α⊥β”成立的( A )

    A.充分不必要条件   B.必要不充分条件

    C.充要条件   D.既不充分也不必要条件

    解析:依题意,由l⊥β,l⊂α可以推出α⊥β;反过来,由α⊥β,l⊂α不能推出l⊥β.因此l⊥β”“α⊥β”成立的充分不必要条件,故选A.

    2.设α为平面,a,b为两条不同的直线,则下列叙述正确的是( B )

    A.若a∥α,b∥α,则ab

    B.若a⊥α,ab,则b⊥α

    C.若a⊥α,ab,则b∥α

    D.若a∥α,ab,则b⊥α

    解析:若a∥α,b∥α,则a与b相交、平行或异面,故A错误;易知B正确;若a⊥α,ab,则b∥α或b⊂α,故C错误;若a∥α,ab,则b∥α或b⊂α或b与α相交,故D错误.

    3.已知αβ是两个不同的平面,m,n是两条不同的直线,下列命题中错误的是( C )

    A.若m⊥α,mn,n⊂β,则α⊥β

    B.若α∥β,m⊥α,n⊥β,则mn

    C.若α∥β,m⊂α,n⊂β,则mn

    D.若α⊥β,m⊂αα∩β=n,mn,则m⊥β

    解析:根据线面垂直的判定可知,当m⊥α,mn,n⊂β时可得n⊥α,则α⊥β,所以A不符合题意;根据面面平行的性质可知,若α∥β,m⊥α,n⊥β,则m⊥β,故mn,所以B不符合题意;根据面面平行的性质可知,m,n可能平行或异面,所以C符合题意;根据面面垂直的性质可知,若α⊥β,m⊂αα∩β=n,mn,则m⊥β,所以D不符合题意.故选C.

    4.如图,在三棱锥P­ABC中,不能证明APBC的条件是( B )

    A.APPB,APPC

    B.APPB,BCPB

    C.平面BPC平面APC,BCPC

    D.AP平面PBC

    解析:A中,因为APPB,APPC,PBPC=P,所以AP平面PBC,又BC平面PBC,所以APBC,故A能证明APBC;C中,因为平面BPC平面APC,BCPC,所以BC平面APC,又AP平面APC,所以APBC,故C能证明APBC;由A知D能证明APBC;B中条件不能判断出APBC,故选B.

    5.如图,正方体ABCD­A1B1C1D1中,下面结论错误的是( D )

    A.BD平面CB1D1

    B.异面直线AD与CB1所成的角为45°

    C.AC1平面CB1D1

    D.AC1与平面ABCD所成的角为30°

    解析:因为BDB1D1,所以BD平面CB1D1,A不符合题意;因为ADBC,所以异面直线AD与CB1所成的角为BCB1=45°,B不符合题意;因为AC1B1D1,AC1B1C,所以AC1平面CB1D1,C不符合题意;AC1与平面ABCD所成的角为CAC130°,故选D.

    6.如图,在下列四个正方体ABCD­A1B1C1D1中,E,F,G均为所在棱的中点,过E,F,G作正方体的截面,则在各个正方体中,直线BD1与平面EFG不垂直的是( D )

    解析:如图,在正方体中,E,F,G,M,N,Q均为所在棱的中点,且六点共面,直线BD1与平面EFMNQG垂直,并且选项A,B,C中的平面与这个平面重合,满足题意.

    对于选项D中图形,由于E,F为AB,A1B1的中点,所以EFBB1,故B1BD1为异面直线EF与BD1所成的角,且tanB1BD1,即B1BD1不为直角,故BD1与平面EFG不垂直,故选D.

    7.三棱柱ABC­A1B1C1中,侧棱AA1垂直于底面A1B1C1,底面三角形A1B1C1是正三角形,E是BC的中点,则下列叙述正确的是( A )

    CC1与B1E是异面直线;

    AE与B1C1是异面直线,且AEB1C1

    AC平面ABB1A1

    A1C1平面AB1E.

    A.   B.①③

    C.①④   D.②④

    解析:对于,CC1,B1E都在平面BB1C1C内,故错误;

    对于,AE,B1C1为在两个平行平面中且不平行的两条直线,底面三角形ABC是正三角形,E是BC中点,所以AEBC,又B1C1BC,故AE与B1C1是异面直线,且AEB1C1,故正确;

    对于,上底面ABC是一个正三角形,不可能存在AC平面ABB1A1,故错误;

    对于,A1C1所在的平面与平面AB1E相交,且A1C1与交线有公共点,故错误.故选A.

    二、填空题

    8.如图,已知BAC=90°,PC平面ABC,则在ABC,PAC的边所在的直线中,与PC垂直的直线有AB,BC,AC;与AP垂直的直线有AB.

    解析:PC平面ABC,

    PC垂直于直线AB,BC,AC.

    ABAC,ABPC,ACPC=C,

    AB平面PAC,

    AP平面PAC,

    ABAP,与AP垂直的直线是AB.

    9.若αβ是两个相交平面,m为一条直线,则下列命题中,所有真命题的序号为②④.

    若m⊥α,则在β内一定不存在与m平行的直线;

    若m⊥α,则在β内一定存在无数条直线与m垂直;

    若m⊂α,则在β内不一定存在与m垂直的直线;

    若m⊂α,则在β内一定存在与m垂直的直线.

    解析:对于,若m⊥α,如果αβ互相垂直,则在平面β内存在与m平行的直线,故错误;对于,若m⊥α,则m垂直于平面α内的所有直线,则β内与αβ的交线平行的直线都与m垂直,故在平面β内一定存在无数条直线与m垂直,故正确;对于③④,若m⊂α,则在平面β内一定存在与m垂直的直线,故错误,正确.

    10.如图,在矩形ABCD中,AB=8,BC=4,E为DC边的中点,沿AE将ADE折起,在折起过程中,下列结论中能成立的序号为.

    ED平面ACD;CD平面BED;BD平面ACD;AD平面BED.

    解析:因为在矩形ABCD中,AB=8,BC=4,E为DC边的中点,则折叠时,D点在平面BCE上的射影的轨迹为O1O2(如图).

    因为折起过程中,DE与AC所成角不能为直角,所以DE不垂直于平面ACD,故不符合;只有D点射影位于O2位置,即平面AED与平面AEB重合时,才有BECD,所以折起过程中CD不垂直于平面BED,故不符合;折起过程中,BD与AC所成的角不能为直角,所以BD不垂直于平面ACD,故不符合;因为ADED,并且在折起过程中,当点D的射影位于O点时,ADBE,所以在折起过程中,AD平面BED能成立,故符合.

    三、解答题

    11.如图,在三棱锥P­ABC中,ABC=90°,平面PAB平面ABC,PA=PB,点D在PC上,且BD平面PAC.

    (1)证明:PA平面PBC;

    (2)若ABBC=2,求三棱锥D­PAB与三棱锥D­ABC的体积比.

    解:(1)证明:因为BD平面PAC,PA平面PAC,所以BDPA,

    因为ABC=90°,所以CBAB,

    又平面PAB平面ABC,平面PAB平面ABC=AB,所以CB平面PAB,

    又PA平面PAB,所以CBPA,

    又CBBD=B,所以PA平面PBC.

    (2)因为三棱锥D­PAB的体积VD­PAB=VA­PBDSPBD×PA=×BD×PD×PA,

    三棱锥D­ABC的体积VD­ABC=VA­BCDSBCD×PA=×BD×CD×PA,

    所以.设AB=2,BC=

    因为PA平面PBC,PB平面PBC,所以PAPB,

    又PA=PB,所以PB=

    在RtPBC中,PC==2

    又BD平面PAC,PC平面PAC,

    所以BDPC,

    所以CD=,PD=

    所以,即三棱锥D­PAB与三棱锥D­ABC的体积比为.

    12.在如图所示的五面体EF­ABCD中,四边形ABCD为菱形,且DAB=60°,EA=ED=AB=2EF=2,EFAB,M为BC的中点.

    (1)求证:FM平面BDE;

    (2)若平面ADE平面ABCD,求F到平面BDE的距离.

    解:(1)证明:如图,取BD中点O,连接OM,OE,因为O,M分别为BD,BC的中点,所以OMCD,且OM=CD.

    因为四边形ABCD为菱形,所以CDAB.

    又EFAB,所以CDEF.

    又AB=CD=2,所以EF=CD.

    所以OM綊EF,所以四边形OMFE为平行四边形,所以FMOE.

    又OE平面BDE,FM平面BDE,

    所以FM平面BDE.

    (2)由(1)知FM平面BDE,所以F到平面BDE的距离等于M到平面BDE的距离.

    如图,取AD的中点H,连接EH,BH,EM,DM.

    因为四边形ABCD为菱形,且DAB=60°,EA=ED=AB=2EF,

    所以EHAD,BHAD.

    因为平面ADE平面ABCD,平面ADE平面ABCD=AD,

    所以EH平面ABCD,EHBH.

    因为EH=BH=,所以BE=.

    所以SBDE××.

    设F到平面BDE的距离为h,

    又因为SBDMSBCD××2×2×sin60°

    所以由V三棱锥E­BDM=V三棱锥M­BDE

    ×××h,解得h=.

    即F到平面BDE的距离为.

    13.如图所示,正方体ABCD­A1B1C1D1的棱长为1,线段B1D1上有两个动点E,F,且EF=,则下列结论:

    EF平面ABCD;

    平面ACF平面BEF;

    三棱锥E­ABF的体积为定值;

    存在某个位置使得异面直线AE与BF所成的角为30°.

    其中正确的是①②③④.(写出所有正确的结论序号)

    解析:由正方体ABCD­A1B1C1D1的棱长为1,线段B1D1上有两个动点E,F,且EF=知,在中,由EFBD,且EF平面ABCD,BD平面ABCD,得EF平面ABCD,故正确;在中,如图,连接BD,CF,由ACBD,ACDD1,可知AC平面BDD1B1,而BE平面BDD1B1,BF平面BDD1B1,则AC平面BEF.

    又因为AC平面ACF,所以平面ACF平面BEF,故正确;在中,三棱锥E­ABF的体积与三棱锥A­BEF的体积相等,三棱锥A­BEF的底面积和高都是定值,故三棱锥E­ABF的体积为定值,故正确;在中,令上底面中心为O,当E与D1重合时,此时点F与O重合,则两异面直线所成的角是OBC1,可求解OBC1=30°,故存在某个位置使得异面直线AE与BF成角30°,故正确.

    14.如图,AB是圆O的直径,点C是圆O上异于A,B的点,PO垂直于圆O所在的平面,且PO=OB=1.

    (1)若D为线段AC的中点,求证:AC平面PDO;

    (2)求三棱锥P­ABC体积的最大值;

    (3)若BC=,点E在线段PB上,求CE+OE的最小值.

    解:(1)证明:在AOC中,因为OA=OC,D为AC的中点,所以ACDO.

    又PO垂直于圆O所在的平面,

    所以POAC.

    因为DOPO=O,所以AC平面PDO.

    (2)因为点C在圆O上,所以当COAB时,C到AB的距离最大,且最大值为1.

    又AB=2,所以ABC面积的最大值为×2×1=1.

    又因为三棱锥P­ABC的高PO=1,故三棱锥P­ABC体积的最大值为×1×1=.

    (3)在POB中,PO=OB=1,POB=90°,所以PB=.

    同理PC=,所以PB=PC=BC.在三棱锥P­ABC中,

    将侧面BCP绕PB旋转至平面BCP,使之与平面ABP共面,如图所示.

    当O,E,C共线时,CE+OE取得最小值.

    又因为OP=OB,CP=CB,

    所以OC垂直平分PB,即E为PB中点.

    从而OC=OE+EC

    即CE+OE的最小值为.

    15.如图,一张A4纸的长、宽分别为2a,2a,A,B,C,D分别是其四条边的中点.现将其沿图中虚线折起,使得P1,P2,P3,P4四点重合为一点P,从而得到一个多面体.下列关于该多面体的命题,正确的是①②③④.(写出所有正确命题的序号)

    该多面体是三棱锥;

    平面BAD平面BCD;

    平面BAC平面ACD;

    该多面体外接球的表面积为5πa2.

    解析:由题意得该多面体是一个三棱锥,故正确;APBP,APCP,BPCP=P,AP平面BCD,又AP平面ABD,平面BAD平面BCD,故正确;同理可证平面BAC平面ACD,故正确;通过构造长方体可得该多面体的外接球半径R=a,所以该多面体外接球的表面积为5πa2,故正确.综上,正确命题的序号为①②③④.

     

     

    相关试卷

    高考数学(理数)一轮复习:课时达标检测42《直线与圆、圆与圆的位置关系》(教师版): 这是一份高考数学(理数)一轮复习:课时达标检测42《直线与圆、圆与圆的位置关系》(教师版)

    高考数学(理数)一轮复习课时作业45《直线、平面垂直的判定及其性质》(原卷版): 这是一份高考数学(理数)一轮复习课时作业45《直线、平面垂直的判定及其性质》(原卷版),共6页。

    高考数学(文数)一轮复习考点测试42《直线平面垂直的判定及其性质》(学生版): 这是一份高考数学(文数)一轮复习考点测试42《直线平面垂直的判定及其性质》(学生版),共8页。试卷主要包含了给出下列四个命题,下列命题中错误的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map