|学案下载
搜索
    上传资料 赚现金
    2023届高考一轮复习讲义(文科)第三章 导数及其应用 第4讲 第2课时 高效演练 分层突破学案
    立即下载
    加入资料篮
    2023届高考一轮复习讲义(文科)第三章 导数及其应用    第4讲 第2课时 高效演练 分层突破学案01
    2023届高考一轮复习讲义(文科)第三章 导数及其应用    第4讲 第2课时 高效演练 分层突破学案02
    还剩2页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2023届高考一轮复习讲义(文科)第三章 导数及其应用 第4讲 第2课时 高效演练 分层突破学案

    展开
    这是一份2023届高考一轮复习讲义(文科)第三章 导数及其应用 第4讲 第2课时 高效演练 分层突破学案,共4页。

    1.(2020·江西七校第一次联考)已知函数y=f(x)是R上的可导函数,当x≠0时,有f′(x)+eq \f(f(x),x)>0,则函数F(x)=x·f(x)-eq \f(1,x)的零点个数是( )
    A.0 B.1
    C.2 D.3
    解析:选B.函数F(x)=xf(x)-eq \f(1,x)的零点,就是方程xf(x)-eq \f(1,x)=0的根,即方程xf(x)=eq \f(1,x)的根.令函数g(x)=xf(x),则g′(x)=f(x)+xf′(x).因为当x>0时,g′(x)=f(x)+xf′(x)>0,所以g(x)=xf(x)单调递增,g(x)>g(0)=0;当x<0时,g′(x)=f(x)+xf′(x)<0,所以g(x)=xf(x)单调递减,g(x)>g(0)=0.所以函数y=g(x)与y=eq \f(1,x)的图象只有一个交点,即F(x)=xf(x)-eq \f(1,x)只有一个零点.故选B.
    2.(2020·武汉调研)已知f(x)=ex-ax2.命题p:∀a≥1,y=f(x)有三个零点,命题q:∃a∈R,f(x)≤0恒成立.则下列命题为真命题的是( )
    A.p∧q B.(﹁p)∧(﹁q)
    C.(﹁p)∧q D.p∧(﹁q)
    解析:选B.对于命题p:当a=1时,f(x)=ex-x2,在同一坐标系中作出y=ex,y=x2的图象(图略),由图可知y=ex与y=x2的图象有1个交点,所以f(x)=ex-x2有1个零点,故命题p为假命题,因为f(0)=1,所以命题q显然为假命题.故(﹁p)∧(﹁q)为真命题.
    3.已知函数f(x)的定义域为[-1,4],部分对应值如下表:
    f(x)的导函数y=f′(x)的图象如图所示.当1解析:根据导函数图象,知2是函数的极小值点,函数y=f(x)的大致图象如图所示.由于f(0)=f(3)=2,1答案:4
    4.若函数f(x)=eq \f(ax-a,ex)+1(a<0)没有零点,则实数a的取值范围为 .
    解析:f′(x)=eq \f(aex-(ax-a)ex,e2x)=eq \f(-a(x-2),ex)(a<0).
    当x<2时,f′(x)<0;当x>2时,f′(x)>0,
    所以当x=2时,f(x)有极小值f(2)=eq \f(a,e2)+1.
    若使函数f(x)没有零点,当且仅当f(2)=eq \f(a,e2)+1>0,
    解得a>-e2,因此-e2答案:(-e2,0)
    5.已知函数f(x)=a+eq \r(x)ln x(a∈R).
    (1)求f(x)的单调区间;
    (2)试判断f(x)的零点个数.
    解:(1)函数f(x)的定义域是(0,+∞),
    f′(x)=(eq \r(x))′ln x+eq \r(x)·eq \f(1,x)
    =eq \f(\r(x)(ln x+2),2x),
    令f′(x)>0,解得x>e-2,
    令f′(x)<0,解得0所以f(x)在(0,e-2)上单调递减,
    在(e-2,+∞)上单调递增.
    (2)由(1)得f(x)min=f(e-2)=a-eq \f(2,e),
    显然a>eq \f(2,e)时,f(x)>0,无零点,
    a=eq \f(2,e)时,f(x)=0,有1个零点,
    a6.(2020·保定调研)已知函数f(x)=eq \f(a,6)x3-eq \f(a,4)x2-ax-2的图象过点Aeq \b\lc\(\rc\)(\a\vs4\al\c1(4,\f(10,3))).
    (1)求函数f(x)的单调递增区间;
    (2)若函数g(x)=f(x)-2m+3有3个零点,求m的取值范围.
    解:(1)因为函数f(x)=eq \f(a,6)x3-eq \f(a,4)x2-ax-2的图象过点Aeq \b\lc\(\rc\)(\a\vs4\al\c1(4,\f(10,3))),
    所以eq \f(32a,3)-4a-4a-2=eq \f(10,3),解得a=2,
    即f(x)=eq \f(1,3)x3-eq \f(1,2)x2-2x-2,
    所以f′(x)=x2-x-2.
    由f′(x)>0,得x<-1或x>2.
    所以函数f(x)的单调递增区间是(-∞,-1),(2,+∞).
    (2)由(1)知f(x)极大值=f(-1)=-eq \f(1,3)-eq \f(1,2)+2-2=-eq \f(5,6),
    f(x)极小值=f(2)=eq \f(8,3)-2-4-2=-eq \f(16,3),
    由数形结合,可知要使函数g(x)=f(x)-2m+3有三个零点,
    则-eq \f(16,3)<2m-3<-eq \f(5,6),
    解得-eq \f(7,6)所以m的取值范围为eq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(7,6),\f(13,12))).
    [综合题组练]
    1.(2019·高考全国卷Ⅱ)已知函数f(x)=(x-1)ln x-x-1.证明:
    (1)f(x)存在唯一的极值点;
    (2)f(x)=0有且仅有两个实根,且两个实根互为倒数.
    证明:(1)f(x)的定义域为(0,+∞).
    f′(x)=eq \f(x-1,x)+ln x-1=ln x-eq \f(1,x).
    因为y=ln x单调递增,y=eq \f(1,x)单调递减,所以f′(x)单调递增.又f′(1)=-1<0,
    f′(2)=ln 2-eq \f(1,2)=eq \f(ln 4-1,2)>0,故存在唯一x0∈(1,2),使得f′(x0)=0.
    又当xx0时,f′(x)>0,f(x)单调递增.
    因此,f(x)存在唯一的极值点.
    (2)由(1)知f(x0)0,所以f(x)=0在(x0,+∞)内存在唯一根x=α.
    由α>x0>1得eq \f(1,α)<1又feq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,α)))=eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,α)-1))ln eq \f(1,α)-eq \f(1,α)-1=eq \f(f(α),α)=0,故eq \f(1,α)是f(x)=0在(0,x0)的唯一根.
    综上,f(x)=0有且仅有两个实根,且两个实根互为倒数.
    2.(2020·武昌区调研考试)已知函数f(x)=aex-aex-1,g(x)=-x3-eq \f(3,2)x2+6x,其中a>0.
    (1)若曲线y=f(x)经过坐标原点,求该曲线在原点处的切线方程;
    (2)若f(x)=g(x)+m在[0,+∞)上有解,求实数m的取值范围.
    解:(1)因为f(0)=a-1=0,所以a=1,此时f(x)=ex-ex-1.
    所以f′(x)=ex-e,f′(0)=1-e.
    所以曲线y=f(x)在原点处的切线方程为y=(1-e)x.
    (2)因为f(x)=aex-aex-1,所以f′(x)=aex-ae=a(ex-e).
    当x>1时,f′(x)>0;当0所以f(x)在(0,1)上单调递减,在(1,+∞)上单调递增.
    所以当x∈[0,+∞)时,f(x)min=f(1)=-1.
    令h(x)=g(x)+m=-x3-eq \f(3,2)x2+6x+m,
    则h′(x)=-3x2-3x+6=-3(x+2)(x-1).
    当x>1时,h′(x)<0;当00.
    所以h(x)在(0,1)上单调递增,在(1,+∞)上单调递减.
    所以当x∈[0,+∞)时,h(x)max=h(1)=eq \f(7,2)+m.
    要使f(x)=g(x)+m在[0,+∞)上有解,则eq \f(7,2)+m≥-1,即m≥-eq \f(9,2).
    所以实数m的取值范围为eq \b\lc\[\rc\)(\a\vs4\al\c1(-\f(9,2),+∞)).x
    -1
    0
    2
    3
    4
    f(x)
    1
    2
    0
    2
    0
    相关学案

    2023届高考一轮复习讲义(理科)第三章 导数及其应用 第2讲 第4课时 高效演练分层突破学案: 这是一份2023届高考一轮复习讲义(理科)第三章 导数及其应用 第2讲 第4课时 高效演练分层突破学案,共4页。

    2023届高考一轮复习讲义(理科)第三章 导数及其应用 第2讲 第2课时 高效演练分层突破学案: 这是一份2023届高考一轮复习讲义(理科)第三章 导数及其应用 第2讲 第2课时 高效演练分层突破学案,共9页。

    2023届高考一轮复习讲义(理科)第三章 导数及其应用 第2讲 第5课时 高效演练分层突破学案: 这是一份2023届高考一轮复习讲义(理科)第三章 导数及其应用 第2讲 第5课时 高效演练分层突破学案,共5页。

    • 精品推荐
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map