2023届高考一轮复习讲义(文科)第二章 函数概念与基本初等函数 第1讲 高效演练 分层突破学案
展开1.函数y=eq \f(1,ln(x-1))的定义域为( )
A.(1,+∞) B.[1,+∞)
C.(1,2)∪(2,+∞) D.(1,2)∪[3,+∞)
解析:选C.由ln(x-1)≠0,得x-1>0且x-1≠1.由此解得x>1且x≠2,即函数y=eq \f(1,ln(x-1))的定义域是(1,2)∪(2,+∞).
2.已知feq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)x-1))=2x-5,且f(a)=6,则a等于( )
A.-eq \f(7,4) B.eq \f(7,4)
C.eq \f(4,3) D.-eq \f(4,3)
解析:选B.令t=eq \f(1,2)x-1,则x=2t+2,
所以f(t)=2(2t+2)-5=4t-1,
所以f(a)=4a-1=6,即a=eq \f(7,4).
3.(2020·江西南昌一模)设函数f(x)=eq \b\lc\{(\a\vs4\al\c1(x2-2x(x≤0),,f(x-3)(x>0),))
则f(5)的值为( )
A.-7 B.-1
C.0 D.eq \f(1,2)
解析:选D.f(5)=f(5-3)=f(2)=f(2-3)=f(-1)=(-1)2-2-1=eq \f(1,2).故选D.
4.已知feq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1+x,x)))=eq \f(x2+1,x2)+eq \f(1,x),则f(x)等于( )
A.(x+1)2(x≠1) B.(x-1)2(x≠1)
C.x2-x+1(x≠1) D.x2+x+1(x≠1)
解析:选C.feq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1+x,x)))=eq \f(x2+1,x2)+eq \f(1,x)=eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(x+1,x)))eq \s\up12(2)-eq \f(x+1,x)+1,令eq \f(x+1,x)=t(t≠1),则f(t)=t2-t+1,即f(x)=x2-x+1(x≠1).
5.设函数f(x)=eq \b\lc\{(\a\vs4\al\c1(\f(1,x),x>1,,-x-2,x≤1,))则f(f(2))= ,函数f(x)的值域是 .
解析:因为f(2)=eq \f(1,2),
所以f(f(2))=feq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))=-eq \f(1,2)-2=-eq \f(5,2).
当x>1时,f(x)∈(0,1),
当x≤1时,f(x)∈[-3,+∞),
所以f(x)∈[-3,+∞).
答案:-eq \f(5,2) [-3,+∞)
6.若函数f(x)在闭区间[-1,2]上的图象如图所示,则此函数的解析式为 .
解析:由题图可知,当-1≤x<0时,f(x)=x+1;当0≤x≤2时,f(x)=-eq \f(1,2)x,所以f(x)=eq \b\lc\{(\a\vs4\al\c1(x+1,-1≤x<0,,-\f(1,2)x,0≤x≤2.))
答案:f(x)=eq \b\lc\{(\a\vs4\al\c1(x+1,-1≤x<0,,-\f(1,2)x,0≤x≤2))
7.已知f(x)=eq \b\lc\{(\a\vs4\al\c1(\f(1,2)x+1,x≤0,,-(x-1)2,x>0,))则使f(x)≥-1成立的x的取值范围是 .
解析:由题意知eq \b\lc\{(\a\vs4\al\c1(x≤0,,\f(1,2)x+1≥-1))或eq \b\lc\{(\a\vs4\al\c1(x>0,,-(x-1)2≥-1,))
解得-4≤x≤0或0<x≤2,故x的取值范围是[-4,2].
答案:[-4,2]
8.设函数f(x)=eq \b\lc\{(\a\vs4\al\c1(ax+b,x<0,,2x,x≥0,))且f(-2)=3,f(-1)=f(1).
(1)求f(x)的解析式;
(2)画出f(x)的图象.
解:(1)由f(-2)=3,f(-1)=f(1)得eq \b\lc\{(\a\vs4\al\c1(-2a+b=3,,-a+b=2,))解得a=-1,b=1,所以f(x)=eq \b\lc\{(\a\vs4\al\c1(-x+1,x<0,,2x,x≥0.))
(2)f(x)的图象如图所示.
[综合题组练]
1.(2020·海淀期末)下列四个函数:①y=3-x;②y=2x-1(x>0);③y=x2+2x-10;④y=eq \b\lc\{(\a\vs4\al\c1(x(x≤0),,\f(1,x)(x>0).))其中定义域与值域相同的函数的个数为( )
A.1 B.2
C.3 D.4
解析:选B.①y=3-x的定义域与值域均为R,②y=2x-1(x>0)的定义域为(0,+∞),值域为eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2),+∞)),③y=x2+2x-10的定义域为R,值域为[-11,+∞),④y=eq \b\lc\{(\a\vs4\al\c1(x(x≤0),,\f(1,x)(x>0)))的定义域和值域均为R.所以定义域与值域相同的函数是①④,共有2个,故选B.
2.(创新型)设f(x),g(x)都是定义在实数集上的函数,定义函数(f·g)(x):∀x∈R,(f·g)(x)=f(g(x)).若f(x)=eq \b\lc\{(\a\vs4\al\c1(x,x>0,,x2,x≤0,))g(x)=eq \b\lc\{(\a\vs4\al\c1(ex,x≤0,,ln x,x>0,))则( )
A.(f·f)(x)=f(x) B.(f·g)(x)=f(x)
C.(g·f)(x)=g(x) D.(g·g)(x)=g(x)
解析:选A.对于A,(f·f)(x)=f(f(x))=eq \b\lc\{(\a\vs4\al\c1(f(x),f(x)>0,,f 2(x),f(x)≤0,))当x>0时,f(x)=x>0,(f·f)(x)=f(x)=x;当x<0时,f(x)=x2>0,(f·f)(x)=f(x)=x2;当x=0时,(f·f)(x)=f 2(x)=0=02,因此对任意的x∈R,有(f·f)(x)=f(x),故A正确,选A.
3.(2020·宁夏银川一中一模)已知函数f(x)=eq \b\lc\{(\a\vs4\al\c1(2-x+1,x≤0,,-\r(x),x>0,))则f(x+1)-9≤0的解集为 .
解析:因为f(x)=eq \b\lc\{(\a\vs4\al\c1(2-x+1,x≤0,,-\r(x),x>0,))
所以当x+1≤0时,eq \b\lc\{(\a\vs4\al\c1(x≤-1,,2-(x+1)-8≤0,))解得-4≤x≤-1;
当x+1>0时,eq \b\lc\{(\a\vs4\al\c1(x>-1,,-\r(x+1)-9≤0,))解得x>-1.
综上,x≥-4,即f(x+1)-9≤0的解集为[-4,+∞).
答案:[-4,+∞)
4.(创新型)设函数f(x)的定义域为D,若对任意的x∈D,都存在y∈D,使得f(y)=-f(x)成立,则称函数f(x)为“美丽函数”,下列所给出的几个函数:
①f(x)=x2;②f(x)=eq \f(1,x-1);
③f(x)=ln(2x+3);④f(x)=2sin x-1.
其中是“美丽函数”的序号有 .
解析:由已知,在函数定义域内,对任意的x都存在着y,使x所对应的函数值f(x)与y所对应的函数值f(y)互为相反数,即f(y)=-f(x).故只有当函数的值域关于原点对称时才会满足“美丽函数”的条件.
①中函数的值域为[0,+∞),值域不关于原点对称,故①不符合题意;
②中函数的值域为(-∞,0)∪(0,+∞),值域关于原点对称,故②符合题意;
③中函数的值域为(-∞,+∞),值域关于原点对称,故③符合题意;
④中函数f(x)=2sin x-1的值域为[-3,1],不关于原点对称,故④不符合题意.故本题正确答案为②③.
答案:②③
2023届高考一轮复习讲义(文科)第二章 函数概念与基本初等函数 第6讲 高效演练 分层突破学案: 这是一份2023届高考一轮复习讲义(文科)第二章 函数概念与基本初等函数 第6讲 高效演练 分层突破学案,共4页。
2023届高考一轮复习讲义(文科)第二章 函数概念与基本初等函数 第7讲 高效演练 分层突破学案: 这是一份2023届高考一轮复习讲义(文科)第二章 函数概念与基本初等函数 第7讲 高效演练 分层突破学案,共6页。
2023届高考一轮复习讲义(文科)第二章 函数概念与基本初等函数 第4讲 高效演练 分层突破学案: 这是一份2023届高考一轮复习讲义(文科)第二章 函数概念与基本初等函数 第4讲 高效演练 分层突破学案,共4页。