所属成套资源:2022年高考数学(理科)一轮复习考点一遍过
考点8.4 直线、平面垂直的判定与性质(解析版)练习题
展开
这是一份考点8.4 直线、平面垂直的判定与性质(解析版)练习题,共15页。
8.4 直线、平面垂直的判定与性质【基础集训】考点一 直线与平面垂直的判定与性质1.已知m和n是两条不同的直线,α和β是两个不重合的平面,下面给出的条件中一定能推出m⊥β的是( )A.α⊥β且m⊂α B.α⊥β且m∥αC.m∥n且n⊥β D.m⊥n且n∥β【答案】 C2.下列命题中错误的是( )A.如果平面α外的直线a不平行于平面α,则平面α内不存在与a平行的直线B.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么直线l⊥平面γC.如果平面α⊥平面β,那么平面α内所有直线都垂直于平面βD.一条直线与两个平行平面中的一个平面相交,则必与另一个平面相交【答案】 C3.如图,PA⊥圆O所在的平面,AB是圆O的直径,C是圆O上一点,E、F分别是A在PB、PC上的射影,给出下列结论:①AF⊥PB;②EF⊥PB;③AF⊥BC;④AE⊥平面PBC.其中正确命题的序号是 . 【答案】 ①②③4.《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.如图,在阳马P-ABCD中,侧棱PD⊥底面ABCD,且PD=CD,过棱PC的中点E,作EF⊥PB交PB于点F,连接DE,DF,BD,BE.证明:PB⊥平面DEF.试判断四面体DBEF是不是鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,说明理由.【解析】 因为PD⊥底面ABCD,所以PD⊥BC,由底面ABCD为长方形,得BC⊥CD,因为PD∩CD=D,所以BC⊥平面PCD,因为DE⊂平面PCD,所以BC⊥DE.又因为PD=CD,点E是PC的中点,所以DE⊥PC.因为PC∩BC=C,所以DE⊥平面PBC.因为PB⊂平面PBC,所以PB⊥DE.又PB⊥EF,DE∩EF=E,所以PB⊥平面DEF.由DE⊥平面PBC,PB⊥平面DEF,可知四面体BDEF的四个面都是直角三角形,即四面体DBEF是一个鳖臑,其四个面的直角分别为∠DEB,∠DEF,∠EFB,∠DFB.考点二 平面与平面垂直的判定与性质5.如图,四棱锥P-ABCD中,PA⊥底面ABCD,底面ABCD为正方形,给出下列结论:①AD∥平面PBC;②平面PAC⊥平面PBD;③平面PAB⊥平面PAC;④平面PAD⊥平面PDC.其中正确结论的序号是 . 【答案】 ①②④6.如图,在三棱锥P-ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D为线段AC的中点,E为线段PC上一点.(1)求证:PA⊥BD;(2)求证:平面BDE⊥平面PAC;(3)当PA∥平面BDE时,求三棱锥E-BCD的体积.【解析】 (1)证明:因为PA⊥AB,PA⊥BC,AB∩BC=B,所以PA⊥平面ABC.因为BD⊂平面ABC,所以PA⊥BD.(2)证明:因为AB=BC,D为AC的中点,所以BD⊥AC.由(1)知,PA⊥BD,又AC∩PA=A,所以BD⊥平面PAC.因为BD⊂平面BDE,所以平面BDE⊥平面PAC.(3)因为PA∥平面BDE,平面PAC∩平面BDE=DE,所以PA∥DE.因为D为AC的中点,所以DE=PA=1,BD=DC=.由(1)知,PA⊥平面ABC,所以DE⊥平面ABC.所以三棱锥E-BCD的体积V=×BD·DC·DE=.7.如图,在四棱锥P-ABCD中,底面ABCD为矩形,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,E,F分别为AD,PB的中点.(1)求证:PE⊥BC;(2)求证:平面PAB⊥平面PCD;(3)求证:EF∥平面PCD.【证明】 (1)因为PA=PD,E为AD的中点,所以PE⊥AD.因为底面ABCD为矩形,所以BC∥AD.所以PE⊥BC.(2)因为底面ABCD为矩形,所以AB⊥AD.又因为平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,所以AB⊥平面PAD.所以AB⊥PD.又因为PA⊥PD,PA∩AB=A,所以PD⊥平面PAB.因为PD⊂平面PCD,所以平面PAB⊥平面PCD.(3)取PC的中点G,连接FG,DG.因为F,G分别为PB,PC的中点,所以FG∥BC,FG=BC.因为四边形ABCD为矩形,且E为AD的中点,所以DE∥BC,DE=BC.所以DE∥FG,DE=FG.所以四边形DEFG为平行四边形.所以EF∥DG.又因为EF平面PCD,DG⊂平面PCD,所以EF∥平面PCD.【综合集训】考法一 证明直线与平面垂直的方法1.在正方体ABCD-A1B1C1D1中,E为棱CD的中点,则( )A.A1E⊥DC1 B.A1E⊥BD C.A1E⊥BC1 D.A1E⊥AC【答案】 C2.如图,在三棱锥P-ABC中,AB=BC=2,PA=PB=PC=AC=4,O为AC的中点.(1)证明:PO⊥平面ABC;(2)若点M在棱BC上,且MC=2MB,求点C到平面POM的距离.【解析】 (1)证明:因为AP=CP=AC=4,O为AC的中点,所以OP⊥AC,且OP=2.连接OB,因为AB=BC=AC,所以△ABC为等腰直角三角形,且OB⊥AC,OB=AC=2.由OP2+OB2=PB2知,OP⊥OB.由OP⊥OB,OP⊥AC且OB∩AC=O知PO⊥平面ABC.(2)作CH⊥OM,垂足为H.又由(1)可得OP⊥CH,所以CH⊥平面POM.故CH的长为点C到平面POM的距离.由题设可知OC=AC=2,CM=BC=,∠ACB=45°.所以OM=,CH==.所以点C到平面POM的距离为.3.如图,在以P为顶点,母线长为的圆锥中,底面圆O的直径AB长为2,点C在圆O所在平面内,且AC是圆O的切线,BC交圆O于点D,连接PD,OD.(1)求证:PB⊥平面PAC;(2)若AC=,求点O到平面PBD的距离.【解析】 (1)证明:因为AB是圆O的直径,AC与圆O切于点A,所以AC⊥AB.又在圆锥中,PO垂直于底面圆O,所以PO⊥AC,而PO∩AB=O,所以AC⊥平面PAB,从而AC⊥PB.在三角形PAB中,PA=PB=,AB=2,故有PA2+PB2=AB2,所以PA⊥PB,又PA∩AC=A,所以PB⊥平面PAC.(2)解法一:作OE⊥BD于E,连接PE.又PO⊥BD,PO∩OE=O,所以BD⊥平面POE.又BD⊂平面PBD,所以平面PBD⊥平面POE,作OF⊥PE于F,因为平面PBD∩平面POE=PE,所以OF⊥平面PBD,故OF的长为点O到平面PBD的距离.连接AD.在Rt△POE中,PO=1,OE=AD==,所以OF==.即点O到平面PBD的距离为.解法二:因为AB=2,AC=,AC⊥AB,所以在直角△ABC中,∠ABC=.又OD=OB=1,则△OBD是等腰三角形,所以BD=,S△OBD=×1×1×sin=.又PB=PD=,所以S△PBD=××=,设点O到平面PBD的距离为d,由VP-OBD=VO-PBD,即S△OBD·PO=S△PBD·d,可得d=.解法三:因为AB=2,AC=,AC⊥AB,所以S△ABC=×2×=.又由(1)可知,AC⊥平面PAB,则AC⊥PA,所以PC==.又PB⊥平面PAC,所以PB⊥PC,则S△PBC=××=.设点O到平面PBD的距离为d,则A到平面PBC的距离为2d,由VP-ACB=VA-PBC,即S△ABC·PO=S△PBC·2d,可得d=.考法二 平面与平面垂直的判定与性质问题4.如图,在四棱锥P-ABCD中,四边形ABCD是平行四边形,AB=BC=1,∠BAD=120°,PB=PC=,PA=2,E,F分别是AD,PD的中点.(1)证明:平面EFC⊥平面PBC;(2)求二面角A-BC-P的余弦值.【解析】 (1)证明:取BC的中点G,连接PG,AG,AC,∵PB=PC,∴PG⊥BC,∵四边形ABCD是平行四边形,∠BAD=120°,∴∠ABC=60°.又AB=BC=1,∴△ABC是等边三角形,∴AG⊥BC.∵AG∩PG=G,∴BC⊥平面PAG,∴BC⊥PA.(3分)∵E,F分别是AD,PD的中点,∴EF∥PA,易知四边形EAGC为平行四边形,∴EC∥AG,∴BC⊥EF,BC⊥EC,∵EF∩EC=E,∴BC⊥平面EFC,(5分)∵BC⊂平面PBC,∴平面EFC⊥平面PBC.(6分)(2)由(1)知PG⊥BC,AG⊥BC,∴∠PGA是二面角A-BC-P的平面角.(7分)∵PG==,AG=,PA=2,∴在△PAG中,cos∠PGA==-,(11分)∴二面角A-BC-P的余弦值为-.(12分)5.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD为菱形,E为CD的中点.(1)求证:BD⊥平面PAC;(2)若∠ABC=60°,求证:平面PAB⊥平面PAE;(3)棱PB上是否存在点F,使得CF∥平面PAE?说明理由.【解析】 (1)因为PA⊥平面ABCD,所以PA⊥BD.又因为底面ABCD为菱形,所以BD⊥AC.所以BD⊥平面PAC.(2)因为PA⊥平面ABCD,AE⊂平面ABCD,所以PA⊥AE.因为底面ABCD为菱形,∠ABC=60°,且E为CD的中点,所以AE⊥CD.所以AB⊥AE.所以AE⊥平面PAB.所以平面PAB⊥平面PAE.(3)棱PB上存在点F,使得CF∥平面PAE.取F为PB的中点,取G为PA的中点,连接CF,FG,EG.则FG∥AB,且FG=AB.因为底面ABCD为菱形,且E为CD的中点,所以CE∥AB,且CE=AB.所以FG∥CE,且FG=CE.所以四边形CEGF为平行四边形.所以CF∥EG.因为CF⊄平面PAE,EG⊂平面PAE,所以CF∥平面PAE. 题组一考点一 直线与平面垂直的判定与性质1.已知l,m是平面α外的两条不同直线.给出下列三个论断:①l⊥m;②m∥α;③l⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题: . 【答案】 若l⊥m,l⊥α,则m∥α(答案不唯一)2.如图,长方体ABCD-A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BE⊥EC1.(1)证明:BE⊥平面EB1C1;(2)若AE=A1E,AB=3,求四棱锥E-BB1C1C的体积.【解析】 本题考查了长方体的性质、直线与平面垂直的判定与性质和锥体的体积,考查了空间想象能力,主要体现了逻辑推理和直观想象的核心素养.(1)由已知得B1C1⊥平面ABB1A1,BE⊂平面ABB1A1,故B1C1⊥BE.又BE⊥EC1,所以BE⊥平面EB1C1.(2)由(1)知∠BEB1=90°.由题设知Rt△ABE≌Rt△A1B1E,所以∠AEB=∠A1EB1=45°,故AE=AB=3,AA1=2AE=6.作EF⊥BB1,垂足为F,则EF⊥平面BB1C1C,且EF=AB=3.所以,四棱锥E-BB1C1C的体积V=×3×6×3=18.思路分析 (1)由长方体的性质易得B1C1⊥BE,再利用直线与平面垂直的判定定理求证;(2)求该四棱锥的体积的关键是求高,利用平面与平面垂直的性质定理,可知只需过E作B1B的垂线即可得高.解题关键 由长方体的性质找BE的垂线和平面BB1C1C的垂线是求解的关键.3.如图,在四棱锥P-ABCD中,底面ABCD为平行四边形,△PCD为等边三角形,平面PAC⊥平面PCD,PA⊥CD,CD=2,AD=3.(1)设G,H分别为PB,AC的中点,求证:GH∥平面PAD;(2)求证:PA⊥平面PCD;(3)求直线AD与平面PAC所成角的正弦值.【解析】 本题主要考查直线与平面平行、直线与平面垂直、平面与平面垂直、直线与平面所成的角等基础知识.考查空间想象能力和推理论证能力.以线面角的计算为依托考查数学运算与直观想象的核心素养.(1)证明:连接BD,易知AC∩BD=H,BH=DH.又由BG=PG,故GH∥PD.又因为GH⊄平面PAD,PD⊂平面PAD,所以GH∥平面PAD.(2)证明:取棱PC的中点N,连接DN.依题意,得DN⊥PC.又因为平面PAC⊥平面PCD,平面PAC∩平面PCD=PC,所以DN⊥平面PAC,又PA⊂平面PAC,故DN⊥PA.又已知PA⊥CD,CD∩DN=D,所以PA⊥平面PCD.(3)连接AN,由(2)中DN⊥平面PAC,可知∠DAN为直线AD与平面PAC所成的角.因为△PCD为等边三角形,CD=2且N为PC的中点,所以DN=.又DN⊥AN,在Rt△AND中,sin∠DAN==.所以,直线AD与平面PAC所成角的正弦值为.思路分析 (1)在△BPD中证明GH∥PD,从而利用线面平行的判定定理证线面平行;(2)取棱PC的中点N,连接DN,有DN⊥PC,由面面垂直的性质,得DN⊥平面PAC,从而得DN⊥PA,进而得出结论;(3)由(2)知所求角为∠DAN,在Rt△AND中求其正弦值即可.考点二 平面与平面垂直的判定与性质4.在平行六面体ABCD-A1B1C1D1中,AA1=AB,AB1⊥B1C1.求证:(1)AB∥平面A1B1C;(2)平面ABB1A1⊥平面A1BC.【证明】 (1)在平行六面体ABCD-A1B1C1D1中,AB∥A1B1.因为AB平面A1B1C,A1B1⊂平面A1B1C,所以AB∥平面A1B1C.(2)在平行六面体ABCD-A1B1C1D1中,四边形ABB1A1为平行四边形.又因为AA1=AB,所以四边形ABB1A1为菱形,所以AB1⊥A1B.因为AB1⊥B1C1,BC∥B1C1,所以AB1⊥BC.又因为A1B∩BC=B,A1B⊂平面A1BC,BC⊂平面A1BC,所以AB1⊥平面A1BC,又因为AB1⊂平面ABB1A1,所以平面ABB1A1⊥平面A1BC.5.如图,矩形ABCD所在平面与半圆弧所在平面垂直,M是上异于C,D的点.(1)证明:平面AMD⊥平面BMC;(2)在线段AM上是否存在点P,使得MC∥平面PBD?说明理由.【解析】 本题考查平面与平面垂直的判定与性质、直线与平面平行的判定与性质.(1)证明:由题设知,平面CMD⊥平面ABCD,交线为CD.因为BC⊥CD,BC⊂平面ABCD,所以BC⊥平面CMD,故BC⊥DM.因为M为上异于C,D的点,且DC为直径,所以DM⊥CM.又BC∩CM=C,所以DM⊥平面BMC.而DM⊂平面AMD,故平面AMD⊥平面BMC.(2)当P为AM的中点时,MC∥平面PBD.证明如下:连接AC交BD于O.因为ABCD为矩形,所以O为AC中点.连接OP,因为P为AM中点,所以MC∥OP.MC⊄平面PBD,OP⊂平面PBD,所以MC∥平面PBD.易错警示 使用判定定理和性质定理进行推理证明时要使条件完备.疑难突破 解决线面平行的探索性问题的策略:(1)通过观察确定点或直线的位置(如中点,中位线),再进行证明.(2)把要得的平行当作已知条件,用平行的性质去求点、线.6.由四棱柱ABCD-A1B1C1D1截去三棱锥C1-B1CD1后得到的几何体如图所示.四边形ABCD为正方形,O为AC与BD的交点,E为AD的中点,A1E⊥平面ABCD.(1)证明:A1O∥平面B1CD1;(2)设M是OD的中点,证明:平面A1EM⊥平面B1CD1.【证明】 (1)取B1D1的中点O1,连接CO1,A1O1,由于ABCD-A1B1C1D1是四棱柱,四边形ABCD为正方形,O为AC与BD的交点,所以A1O1∥OC,A1O1=OC,因此四边形A1OCO1为平行四边形,所以A1O∥O1C.又O1C⊂平面B1CD1,A1O平面B1CD1,所以A1O∥平面B1CD1.(2)因为AC⊥BD,E,M分别为AD和OD的中点,所以EM⊥BD,又A1E⊥平面ABCD,BD⊂平面ABCD,所以A1E⊥BD,因为B1D1∥BD,所以EM⊥B1D1,A1E⊥B1D1,又A1E,EM⊂平面A1EM,A1E∩EM=E,所以B1D1⊥平面A1EM,又B1D1⊂平面B1CD1,所以平面A1EM⊥平面B1CD1.方法总结 证明面面垂直的方法:1.面面垂直的定义;2.面面垂直的判定定理(a⊥β,a⊂α⇒α⊥β).易错警示 a∥b,a∥α⇒/ b∥α.
相关试卷
这是一份2024年(新高考)高考数学一轮复习突破练习8.4《直线、平面垂直的判定与性质》(含详解),共9页。试卷主要包含了选择题,多选题,填空题等内容,欢迎下载使用。
这是一份(新高考)高考数学一轮复习分层突破练习8.4《直线、平面垂直的判定与性质》(含详解),共9页。
这是一份(新高考)高考数学一轮复习课时练习8.4《直线、平面垂直的判定与性质》(含解析),共21页。试卷主要包含了三种垂直关系的转化等内容,欢迎下载使用。