2021年人教版数学九年级上册期末复习试卷七(含答案)
展开2021年人教版数学九年级上册期末复习试卷
一、选择题
1.﹣7的相反数是( )
A.﹣ B.﹣7 C. D.7
2.方程9x2=16的解是( )
A. B. C. D.
3.下面的图形中,是轴对称图形但不是中心对称图形的是( )
A. B. C. D.
4.下列运算正确的是( )
A.a3+a4=a7 B.2a3•a4=2a7 C.(2a4)3=8a7 D.a8÷a2=a4
5.将0.00007用科学记数法表示为( )
A.7×10﹣6 B.70×10﹣5 C.7×10﹣5 D.0.7×10﹣6
6.下列几何体中,有一个几何体的主视图与俯视图的形状不一样,这个几何体是( )
A. 正方体 B. 圆柱
C. 圆椎 D. 球
7.在一次中学生田径运动会上,参加跳高的15名运动员的成绩如下表所示:
成绩(m) | 1.50 | 1.60 | 1.65 | 1.70 | 1.75 | 1.80 |
人数 | 1 | 2 | 4 | 3 | 3 | 2 |
这15名运动员跳高成绩的中位数是( )
A.4 B.1.70 C.1.75 D.1.65
8.如图,在Rt△ABC中,∠BAC=90°,将△ABC绕点A顺时针旋转90°后得到△AB′C′(点B的对应点是点B′,点C的对应点是点C′),连接CC′.若∠CC′B′=32°,则∠B的大小是( )
A.32° B.64° C.77° D.87°
9.已知二次函数y=ax2+bx+c(a≠0)的图象如图.
则下列说法:
①c=0;②该抛物线的对称轴是直线x=﹣1;③当x=1时,y=2a;④am2+bm+a>0(m≠﹣1).
其中正确的个数是( )
A.1 B.2 C.3 D.4
10.如图,在Rt△ABC中,∠C=90°,AC=1cm,BC=2cm,点P从点A出发,以1cm/s的速度沿折线AC→CB→BA运动,最终回到点A,设点P的运动时间为x(s),线段AP的长度为y(cm),则能够反映y与x之间函数关系的图象大致是( )
A. B. C. D.
二、填空题
11.抛物线y=的顶点是 .
12.若二次根式有意义,则x的取值范围是 .
13.分解因式:a3﹣9a= .
14.100件外观相同的产品中有5件不合格,现从中任意抽取1件进行检测,抽到不合格产品的概率是 .
15.如图所示,一个宽为2cm的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数恰好是“2”和“10”(单位:cm),那么该光盘的直径是 cm.
16.将一列数,2,,2,,……,2.按如图的数列进行排列,按照该方法进行排列,3的位置可记为(2,3),2的位置可记为(3,2),那么这列数中的最大有理数按此排法的位置可记为(m,n),则m+n的值为 .
三、解答题
17.计算:2tan30°
18.先化简,再求值:,其中x=0.
19.已知一元二次方程x2﹣(m+6)x+m2=0有两个相等的实根,且满足x1+x2=x1x2,求m的值.
20.解不等式组,并把它们的解集表示在数轴上.
21.某校课外兴趣小组在本校学生中开展“感动中国年度人物”先进事迹知晓情况专题调查活动,采取随机抽样的方式进行问卷调查,问卷调查的结果分为A、B、C、D四类.其中,A类表示“非常了解”,B类表示“比较了解”,C类表示“基本了解”,D类表示“不太了解”,划分类别后的数据整理如下表:
类别 | A | B | C | D |
频数 | 30 | 40 | 24 | b |
频率 | a | 0.4 | 0.24 | 0.06 |
(1)表中的a= ,b= ;
(2)根据表中数据,求扇形统计图中类别为B的学生数所对应的扇形圆心角的度数;
(3)若该校有学生1000名,根据调查结果估计该校学生中类别为C的人数约为多少?
22.如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.
(1)求证:CE=CF;
(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?
23.如图,在△ABC中,∠C=90°,∠ABC的平分线交AC于点E,过点E作BE的垂线交AB于点F,⊙O是△BEF的外接圆.
(1)求证:AC是⊙O的切线.
(2)过点E作EH⊥AB于点H,求证:CD=HF.
24.如图,已知抛物线y=ax2+bx+c与x轴的一个交点为A(3,0),与y轴的交点为点B(0,3),其顶点为C,对称轴为x=1,
(1)求抛物线的解析式;
(2)已知点M为y轴上的一个动点,当△ABM为等腰三角形时,求点M的坐标;
(3)将△AOB沿x轴向右平移m个单位长度(0<m<3)得到另一个三角形,将所得的三角形与△ABC重叠部分的面积记为S,用m的代数式表示S,并求其最大值.
25.如图,点M(﹣3,m)是一次函数y=x+1与反比例函数y=(k≠0)的图象的一个交点.
(1)求反比例函数表达式;
(2)点P是x轴正半轴上的一个动点,设OP=a(a≠2),过点P作垂直于x轴的直线,分别交一次函数,反比例函数的图象于点A,B,过OP的中点Q作x轴的垂线,交反比例函数的图象于点C,△ABC′与△ABC关于直线AB对称.
①当a=4时,求△ABC′的面积;
②当a的值为 时,△AMC与△AMC′的面积相等.
参考答案
1.答案为:D.
2.答案为:C.
3.答案为:D.
4.答案为:B.
5.答案为:C.
6.答案为:C.
7.答案为:B.
8.答案为:C.
9.答案为:C.
10.答案为:A.
11.答案为:(﹣1,﹣2).
12.答案为:x≥﹣1.
13.答案为:a(a+3)(a﹣3).
14.答案为:.
15.答案为:10
16.答案为:28.
17.解:原式=2×﹣(﹣1)+1+=﹣+1+1+=2.
18.解:原式=÷=(x﹣1)•=,
当x=0时,原式==.
19.解:∵一元二次方程x2﹣(m+6)x+m2=0有两个相等的实根,
∴△=0,即(m+6)2﹣4m2=0,解得m=﹣2或m=6,
∵x1+x2=x1x2,
∴m+6=m2,解得m=﹣2或m=3,
∴m=﹣2.
20.解:,
解不等式①得,x<2,
解不等式②得,x≥﹣1,
在数轴上表示如下:
所以不等式组的解集为:﹣1≤x<2.
21.解:(1)问卷调查的总人数是: =100(名),
a==0.3,b=100×0.06=6(名),
故答案为:0.3,6;
(2)类别为B的学生数所对应的扇形圆心角的度数是:360°×0.4=144°;
(3)根据题意得:1000×0.24=240(名).
答:该校学生中类别为C的人数约为240名.
22.(1)证明:在正方形ABCD中,
∵,
∴△CBE≌△CDF(SAS).
∴CE=CF.
(2)解:GE=BE+GD成立.
理由是:∵由(1)得:△CBE≌△CDF,
∴∠BCE=∠DCF,
∴∠BCE+∠ECD=∠DCF+∠ECD,即∠ECF=∠BCD=90°,
又∵∠GCE=45°,∴∠GCF=∠GCE=45°.
∵,
∴△ECG≌△FCG(SAS).[来源:学*科*网]
∴GE=GF.
∴GE=DF+GD=BE+GD.
23.证明:(1)如图1,连接OE.
∵BE⊥EF,
∴∠BEF=90°,
∴BF是圆O的直径.
∵BE平分∠ABC,
∴∠CBE=∠OBE,
∵OB=OE,
∴∠OBE=∠OEB,
∴∠OEB=∠CBE,
∴OE∥BC,
∴∠AEO=∠C=90°,
∴AC是⊙O的切线;
(2)如图2,连结DE.
∵∠CBE=∠OBE,EC⊥BC于C,EH⊥AB于H,
∴EC=EH.
∵∠CDE+∠BDE=180°,∠HFE+∠BDE=180°,
∴∠CDE=∠HFE.
在△CDE与△HFE中,
,
∴△CDE≌△HFE(AAS),
∴CD=HF.
24.解:(1)由题意可知,抛物线y=ax2+bx+c与x轴的另一个交点为(﹣1,0),则
,解得.
故抛物线的解析式为y=﹣x2+2x+3.
(2)依题意:设M点坐标为(0,t),
①当MA=MB时: =解得t=0,
故M(0,0);
②当AB=AM时:=3解得t=3(舍去)或t=﹣3,故M(0,﹣3);
③当AB=BM时,=3解得t=3±3,
故M(0,3+3)或M(0,3﹣3).
所以点M的坐标为:(0,0)、(0,﹣3)、(0,3+3)、(0,3﹣3).
(3)平移后的三角形记为△PEF.
设直线AB的解析式为y=kx+b,则
,解得.
则直线AB的解析式为y=﹣x+3.
△AOB沿x轴向右平移m个单位长度(0<m<3)得到△PEF,
易得直线EF的解析式为y=﹣x+3+m.
设直线AC的解析式为y=k′x+b′,则
,解得.
则直线AC的解析式为y=﹣2x+6.
连结BE,直线BE交AC于G,则G(,3).
在△AOB沿x轴向右平移的过程中.
①当0<m≤时,如图1所示.
设PE交AB于K,EF交AC于M.
则BE=EK=m,PK=PA=3﹣m,
联立,解得,
即点M(3﹣m,2m).
故S=S△PEF﹣S△PAK﹣S△AFM
=PE2﹣PK2﹣AF•h
=﹣(3﹣m)2﹣m•2m
=﹣m2+3m.
②当<m<3时,如图2所示.
设PE交AB于K,交AC于H.
因为BE=m,所以PK=PA=3﹣m,
又因为直线AC的解析式为y=﹣2x+6,
所以当x=m时,得y=6﹣2m,
所以点H(m,6﹣2m).
故S=S△PAH﹣S△PAK
=PA•PH﹣PA2
=﹣(3﹣m)•(6﹣2m)﹣(3﹣m)2
=m2﹣3m+.
综上所述,当0<m≤时,S=﹣m2+3m;当<m<3时,S=m2﹣3m+.
25.解:(1)把M(﹣3,m)代入y=x+1,则m=﹣2.
将(﹣3,﹣2)代入y=,得k=6,则反比例函数解析式是:y=;
(2)①连接CC′交AB于点D.则AB垂直平分CC′.
当a=4时,A(4,5),B(4,1.5),则AB=3.5.
∵点Q为OP的中点,
∴Q(2,0),
∴C(2,3),则D(4,3),
∴CD=2,
∴S△ABC=AB•CD=×3.5×2=3.5,则S△ABC′=3.5;
②∵△AMC与△AMC′的面积相等,
∴C和C′到直线MA的距离相等,
∴C、A、C′三点共线,
∴AP=CQ=,
又∵AP=PN,
∴=a+1,解得a=3或a=﹣4(舍去),
∴当a的值为3时,△AMC与△AMC′的面积相等.
故答案是:3.
人教版数学九年级上册期末复习试卷08(含答案): 这是一份人教版数学九年级上册期末复习试卷08(含答案),共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
人教版数学九年级上册期末复习试卷07(含答案): 这是一份人教版数学九年级上册期末复习试卷07(含答案),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
人教版数学九年级上册期末复习试卷01(含答案): 这是一份人教版数学九年级上册期末复习试卷01(含答案),共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

