中考数学《一轮专题讲义》(41专题)第37讲 解直角三角形的应用(原卷版)学案
展开中考数学一轮复习讲义
考点三十七:解直角三角形的应用
聚焦考点☆温习理解
一、解直角三角形的应用常用知识
1. 仰角和俯角:
仰角:在视线与水平线所成的角中,视线在水平线上方的角叫做仰角
俯角:在视线与水平线所成的角中,视线在水平线下方的角叫做俯角
2.坡度和坡角
坡度:坡面的铅直高度h和水平宽度l的比叫做坡面的坡度(或坡比),记作i=________
坡角:坡面与水平面的夹角叫做坡角,记作α,i=tanα
坡度越大,α角越大,坡面________
3.方向角(或方位角)
指北或指南方向线与目标方向线所成的小于90°的水平角叫做方向角
二、解直角三角形的应用可解决的问题
1.测量物体的高度;
2.测量河的宽度;
3.解决航海航空问题;
4.解决坡度问题;
5.解决实际生活中其它问题.
名师点睛☆典例分类
考点典例一、解直角三角形的应用----测量物体的高度
【例1】(2019•河南)数学兴趣小组到黄河风景名胜区测量炎帝塑像(塑像中高者)的高度.如图所示,炎帝塑像DE在高55m的小山EC上,在A处测得塑像底部E的仰角为34°,再沿AC方向前进21m到达B处,测得塑像顶部D的仰角为60°,求炎帝塑像DE的高度.
(精确到1m.参考数据:sin34°≈0.56,cos34°=0.83,tan34°≈0.67,≈1.73)
【举一反三】
(2018新疆建设兵团中考模拟)如图,甲、乙为两座建筑物,它们之间的水平距离BC为30m,在A点测得D点的仰角∠EAD为45°,在B点测得D点的仰角∠CBD为60°,求这两座建筑物的高度(结果保留根号)
考点典例二、解直角三角形的应用----测量河的宽度及距离
【例2】(2019•湖北省咸宁市•3分)如图所示,九(1)班数学课外活动小组在河边测量河宽AB(这段河流的两岸平行),他们在点C测得∠ACB=30°,点D处测得∠ADB=60°,CD=80m,则河宽AB约为 69 m(结果保留整数,≈1.73).
【举一反三】
(2019·广西贺州·8分)如图,在A处的正东方向有一港口B.某巡逻艇从A处沿着北偏东60°方向巡逻,到达C处时接到命令,立刻在C处沿东南方向以20海里/小时的速度行驶3小时到达港口B.求A,B间的距离.(≈1.73,≈1.4,结果保留一位小数).
考点典例三、解直角三角形的应用----解决航海航空问题
【例3】(2019•新疆)如图,一艘海轮位于灯塔P的东北方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处.
(1)求海轮从A处到B处的途中与灯塔P之间的最短距离(结果保留根号);
(2)若海轮以每小时30海里的速度从A处到B处,试判断海轮能否在5小时内到达B处,并说明理由.
(参考数据:≈1.41,≈1.73,≈2.45)
【举一反三】
(2018湖南长沙中考模拟)如图示一架水平飞行的无人机AB的尾端点A测得正前方的桥的左端点P的
俯角为α其中tanα=2,无人机的飞行高度AH为500米,桥的长度为1255米.
①求点H到桥左端点P的距离;
②若无人机前端点B测得正前方的桥的右端点Q的俯角为30°,求这架无人机的长度AB.
考点典例四、解直角三角形的应用----解决坡度问题
【例4】(2019•山东潍坊•6分)自开展“全民健身运动”以来,喜欢户外步行健身的人越来越多,为方便群众步行健身,某地政府决定对一段如图1所示的坡路进行改造.如图2所示,改造前的斜坡AB=200米,坡度为1:;将斜坡AB的高度AE降低AC=20米后,斜坡AB改造为斜坡CD,其坡度为1:4.求斜坡CD的长.(结果保留根号)
【举一反三】
(2017重庆A卷第11题)如图,小王在长江边某瞭望台D处,测得江面上的渔船A的俯角为40°,若DE=3米,CE=2米,CE平行于江面AB,迎水坡BC的坡度i=1:0.75,坡长BC=10米,则此时AB的长约为( )(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84).
A.5.1米 B.6.3米 C.7.1米 D.9.2米
考点典例五、解直角三角形的应用----解决实际生活问题
【例5(2019•湖南常德•8分)图1是一种淋浴喷头,图2是图1的示意图,若用支架把喷头固定在点A处,手柄长AB=25cm,AB与墙壁DD′的夹角∠D′AB=37°,喷出的水流BC与AB形成的夹角∠ABC=72°,现在住户要求:当人站在E处淋浴时,水流正好喷洒在人体的C处,且使DE=50cm,CE=130cm.问:安装师傅应将支架固定在离地面多高的位置?
(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,sin72°≈0.95,cos72°≈0.31,tan72°≈3.08,sin35°≈0.57,cos35°≈0.82,tan35°≈0.70).
【举一反三】
(2019•甘肃庆阳•8分)图①是放置在水平面上的台灯,图②是其侧面示意图(台灯底座高度忽略不计),其中灯臂AC=40cm,灯罩CD=30cm,灯臂与底座构成的∠CAB=60°.CD可以绕点C上下调节一定的角度.使用发现:当CD与水平线所成的角为30°时,台灯光线最佳.现测得点D到桌面的距离为49.6cm.请通过计算说明此时台灯光线是否为最佳?(参考数据:取1.73).
课时作业☆能力提升
1.(2018广西百色中考模拟)如图,在距离铁轨200米处的处,观察由南宁开往百色的“和谐号”动车,当动车车头在处时,恰好位于处的北偏东方向上,10秒钟后,动车车头到达处,恰好位于处西北方向上,则这时段动车的平均速度是( )米/秒.
A. B. C. 200 D.300
2. (2018黑龙江哈尔滨中考模拟)某楼梯的侧面如图所示,已测得的长约为3.5米, 约为,则该楼梯的高度可表示为( )
A.米 B.米 C.米 D.米
3. (2018山东青岛中考模拟)如图,数学实践活动小组要测量学校附近楼房的高度,在水平底面处安置侧倾器得楼房顶部点的仰角为,向前走20米到达处,测得点的仰角为.已知侧倾器的高度为1.6米,则楼房的高度约为( )
(结果精确到0.1米,)
A.米 B.米 C.米 D.米
4. (2017甘肃兰州第3题)如图,一个斜坡长130m,坡顶离水平地面的距离为50m,那么这个斜坡与水平地面夹角的正切值等于( )
A. B. C. D.
5. (2018浙江台州中考模拟)如图,一名滑雪运动员沿着倾斜角为的斜坡,从滑行至,已知米,则这名滑雪运动员的高度下降了 米.(参考数据:,,)
6. 【2019年浙江省绍兴市中考数学模拟试卷(5月份)】如图,某人在山坡坡脚C处测得一座建筑物定点A的仰角为60°,沿山坡向上走到P处再测得该建筑物顶点A的仰角为45°.已知BC=60 m,山坡的坡比为1∶2.
(1)求该建筑物的高度(即AB的长,结果保留根号);
(2)求此人所在位置点P的铅直高度(即PD的长,结果保留根号).
7. 为了测量竖直旗杆AB的高度,某综合实践小组在地面D处竖直放置标杆CD,并在地面上水平放置个平面镜E,使得B,E,D在同一水平线上,如图所示.该小组在标杆的F处通过平面镜E恰好观测到旗杆顶A(此时∠AEB=∠FED).在F处测得旗杆顶A的仰角为39.3°,平面镜E的俯角为45°,FD=1.8米,问旗杆AB的高度约为多少米? (结果保留整数)(参考数据:tan39.3°≈0.82,tan84.3°≈10.02)
8. (2018青海西宁中考模拟)如图,建设“幸福西宁”,打造“绿色发展样板城市”.美丽的湟水河宛如一条玉带穿城而过,已形成“水清、流畅、岸绿、景美”的生态环境新格局.在数学课外实践活动中,小亮在海湖新区自行车绿道北段上的两点分别对南岸的体育中心进行测量,分别没得米,求体育中心到湟水河北岸的距离约为多少米(精确到1米,)?
9. (2018山东德州中考模拟)如图所示,某公路检测中心在一事故多发地带安装了一个测速仪,检测点设在距离公路10m的A处,测得一辆汽车从B处行驶到C处所用的时间为0.9秒.已知∠B=30°,∠C=45°
(1)求B,C之间的距离;(保留根号)[来源:Z.xx.k.Com]
(2)如果此地限速为80km/h,那么这辆汽车是否超速?请说明理由.(参考数据:,)
10. .图1是一种折叠门,由上下轨道和两扇长宽相等的活页门组成,整个活页门的右轴固定在门框
上,通过推动左侧活页门开关;图2是其俯视图简化示意图,已知轨道 ,两扇活页门的宽 ,点固定,当点在上左右运动时,与的长度不变(所有结果保留小数点后一位).
(1)若,求的长;
(2)当点C从点A向右运动60时,求点在此过程中运动的路径长.
(参考数据:sin50°≈0.77, cos50°≈0.64, tan50°≈1.19, π取3.14)
图1 图2
11. 2019•大庆)如图,一艘船由A港沿北偏东60°方向航行10 km至B港,然后再沿北偏西30°方向航行10 km至C港.
(1)求A,C两港之间的距离(结果保留到0.1 km,参考数据:≈1.414,≈1.732);
(2)确定C港在A港的什么方向.
12. 【2019•河南】数学兴趣小组到黄河风景名胜区测量炎帝塑像(塑像中高者)的高度.如图所示,炎帝塑像DE在高55 m的小山EC上,在A处测得塑像底部E的仰角为34°,再沿AC方向前进21 m到达B处,测得塑像顶部D的仰角为60°,求炎帝塑像DE的高度.
(精确到1 m.参考数据:sin34°≈0.56,cos34°=0.83,tan34°≈0.67,1.73)
13. 【2019•上海】图1是某小型汽车的侧面示意图,其中矩形ABCD表示该车的后备箱,在打开后备箱的过程中,箱盖ADE可以绕点A逆时针方向旋转,当旋转角为60°时,箱盖ADE落在AD′E′的位置(如图2所示).已知AD=90厘米,DE=30厘米,EC=40厘米.
(1)求点D′到BC的距离;
(2)求E、E′两点的距离.
14. (2019•江苏宿迁•10分)宿迁市政府为了方便市民绿色出行,推出了共享单车服务.图①是某品牌共享单车放在水平地面上的实物图,图②是其示意图,其中AB、CD都与地面l平行,车轮半径为32cm,∠BCD=64°,BC=60cm,坐垫E与点B的距离BE为15cm.
(1)求坐垫E到地面的距离;
(2)根据经验,当坐垫E到CD的距离调整为人体腿长的0.8时,坐骑比较舒适.小明的腿长约为80cm,现将坐垫E调整至坐骑舒适高度位置E',求EE′的长.
(结果精确到0.1cm,参考数据:sin64°≈0.90,cos64°≈0.44,tan64°≈2.05)
中考数学《一轮专题讲义》(41专题)第02讲 实数的计算(原卷版)学案: 这是一份中考数学《一轮专题讲义》(41专题)第02讲 实数的计算(原卷版)学案,共7页。学案主要包含了实数的运算,非负数的性质,实数的大小比较等内容,欢迎下载使用。
中考数学《一轮专题讲义》(41专题)第19讲 统计的应用(原卷版)学案: 这是一份中考数学《一轮专题讲义》(41专题)第19讲 统计的应用(原卷版)学案,共12页。学案主要包含了条形统计图与折线统计图,扇形统计图,频数分布直方图,利用统计量解决实际问题等内容,欢迎下载使用。
中考数学《一轮专题讲义》(41专题)第23讲 视图与投影(原卷版)学案: 这是一份中考数学《一轮专题讲义》(41专题)第23讲 视图与投影(原卷版)学案,共9页。学案主要包含了辨别立体图形的三种视图,利用三视图求几何体的面积,由三视图确定物体的形状,由视图确定立方体的个数,利用三视图求几何体的体积等内容,欢迎下载使用。