![高中数学一轮总复习课件1.2 充分条件与必要条件、全称量词与存在量词01](http://img-preview.51jiaoxi.com/3/3/12488899/0/0.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![高中数学一轮总复习课件1.2 充分条件与必要条件、全称量词与存在量词02](http://img-preview.51jiaoxi.com/3/3/12488899/0/1.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![高中数学一轮总复习课件1.2 充分条件与必要条件、全称量词与存在量词03](http://img-preview.51jiaoxi.com/3/3/12488899/0/2.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![高中数学一轮总复习课件1.2 充分条件与必要条件、全称量词与存在量词04](http://img-preview.51jiaoxi.com/3/3/12488899/0/3.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![高中数学一轮总复习课件1.2 充分条件与必要条件、全称量词与存在量词05](http://img-preview.51jiaoxi.com/3/3/12488899/0/4.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![高中数学一轮总复习课件1.2 充分条件与必要条件、全称量词与存在量词06](http://img-preview.51jiaoxi.com/3/3/12488899/0/5.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![高中数学一轮总复习课件1.2 充分条件与必要条件、全称量词与存在量词07](http://img-preview.51jiaoxi.com/3/3/12488899/0/6.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![高中数学一轮总复习课件1.2 充分条件与必要条件、全称量词与存在量词08](http://img-preview.51jiaoxi.com/3/3/12488899/0/7.jpg?x-oss-process=image/resize,w_794/sharpen,100)
高中数学一轮总复习课件1.2 充分条件与必要条件、全称量词与存在量词
展开1.通过对典型数学命题的梳理,理解必要条件的意义,理解各种性质定理与必要条件的关系.2.通过对典型数学命题的梳理,理解充分条件的意义,理解各种判定定理与充分条件的关系.3.通过对典型数学命题的梳理,理解充要条件的意义,理解数学中的定义与充要条件的关系.4.通过已知的数学实例,理解全称量词与存在量词的意义.5.能正确使用存在量词对全称量词命题进行否定.6.能正确使用全称量词对存在量词命题进行否定.
本节内容主要有4个考点:(1)充要条件的判断;(2)根据充要条件求参数;(3)全称(存在)量词命题的真假判断;(4)含有一个量词的命题的否定.尤其是充要条件更为重要,它可以与其他知识综合考查,备考时要注意命题的方向,合理选择方法,注意逻辑推理素养的训练.
第一环节 必备知识落实
第二环节 关键能力形成
第三环节 学科素养提升
2.充分条件、必要条件、充要条件设与p对应的集合为A={x|p(x)},与q对应的集合为B={x|q(x)},则有如下结论:
温馨提示由上表可知,判断充分条件、必要条件、充要条件时应采用以下方法:(1)确定条件p是什么,结论q是什么;(2)尝试从条件推结论,若p⇒q,则充分性成立,p是q的充分条件;(3)考虑从结论推条件,若q⇒p,则p是q的必要条件,必要性成立;(4)若证明命题的条件是充要的,则既要证明充分性又要证明必要性.
3.全称量词和存在量词
4.全称量词命题和存在量词命题
5.全称量词命题与存在量词命题的否定
温馨提示全称量词命题的否定是存在量词命题,存在量词命题的否定是全称量词命题.
1.下列说法正确的画“√”,错误的画“×”.(1)“对顶角相等”是命题.( )(2)“有两个角是锐角的三角形是锐角三角形”是真命题.( )(3)命题“若ac2>bc2,则a>b”是假命题.( )(4)若q是p的必要条件,则p是q的充分条件.( )(5)“p是q的充分不必要条件”与“p的充分不必要条件是q”表达的意义相同.( )
2.若a,b均为实数,则“a>b”是“a3>b3”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件
3.已知命题p:∀x>0,lg2x<2x+3,则命题p的否定为( )A.∀x>0,lg2x≥2x+3B.∃x>0,lg2x≥2x+3C.∃x>0,lg2x<2x+3D.∀x<0,lg2x≥2x+3
因为a>b能推出a3>b3,a3>b3也能推出a>b,所以“a>b”是“a3>b3”的充要条件,故选C.
根据全称量词命题的否定为存在量词命题,则命题p的否定为:∃x>0, lg2x≥2x+3,故选B.
解题心得充分条件、必要条件的判断方法:(1)定义法,根据p⇒q,q⇒p进行判断.(2)集合法,根据p,q成立对应的集合之间的包含关系进行判断.
对点训练1设x∈R,则“x2-5x<0”是“|x-1|<1”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件
由x2-5x<0,得0
解题心得1.与充分条件、必要条件有关的参数问题的求解方法:解决此类问题一般是根据条件把问题转化为集合之间的关系,并由此列出关于参数的不等式(组)求解.2.求解参数的取值范围时,一定要注意区间端点值的检验,尤其是利用两个集合之间的关系求解参数的取值范围时,不等式是否能够取等号决定端点值的取舍,处理不当容易出现漏解或增解的现象.
对点训练2设p:2x2-3x+1≤0,q:x2-(2a+1)x+a(a+1)≤0,若p是q的充分不必要条件,则实数a的取值范围是 .
解题心得1.判定全称量词命题“∀x∈M,p(x)”是真命题,需要对集合M中的每个元素x,证明p(x)成立;要判断存在量词命题是真命题,只要在限定集合内至少找到一个x,使p(x)成立.2.不管是全称量词命题还是存在量词命题,其真假不容易正面判断时,可先判断其否定的真假.
对点训练3在下列命题中,为真命题的是( )A.∀x∈R,x2>0B.∀x∈R,-1
例4 (1)命题“∃x∈∁RQ,x2∈Q”的否定是( )A.∃x∉∁RQ,x2∈QB.∃x∈∁RQ,x2∉QC.∀x∉∁RQ,x2∈QD.∀x∈∁RQ,x2∉Q
“∃x∈∁RQ”改为“∀x∈∁RQ”,“x2∈Q”的否定为“x2∉Q”.
(2)已知命题p:∃x∈R,lg2(3x+1)≤0,则( )A.p是假命题,命题p的否定:∀x∈R,lg2(3x+1)≤0B.p是假命题,命题p的否定:∀x∈R,lg2(3x+1)>0C.p是真命题,命题p的否定:∀x∈R,lg2(3x+1)≤0D.p是真命题,命题p的否定:∀x∈R,lg2(3x+1)>0
因为3x+1>1,所以lg2(3x+1)>0恒成立,则命题p是假命题;又命题p的否定:∀x∈R,lg2(3x+1)>0,故选B.
解题心得对全称(存在)量词命题进行否定的方法是改量词、否结论.省略量词的要结合命题的含义加上量词.
对点训练4命题“有些相互垂直的两条直线不相交”的否定是( )A.有些相互垂直的两条直线相交B.有些不相互垂直的两条直线不相交C.任意相互垂直的两条直线相交D.任意相互垂直的两条直线不相交
因为存在量词命题的否定是全称量词命题,所以命题“有些相互垂直的两条直线不相交”的否定是“任意相互垂直的两条直线相交”.故选C.
例5 给定命题p:对任意实数x都有ax2+2ax+4>0成立;q:关于x的方程x2-x+a=0有实数根.(1)分别求出命题p,q为真命题时,实数a的取值范围;(2)若命题p为真命题,q为假命题,求实数a的取值范围;(3)若命题p,q中至少有一个为真命题,求实数a的取值范围.
解题心得以命题的真假为依据求参数的取值范围时,首先要对命题进行化简,然后依据题意判断出每个简单命题的真假,最后列出含有参数的不等式(组)求解即可.
对点训练5若命题“∃x∈R,x2+(a-1)x+1<0”是真命题,则实数a的取值范围是( )A.[-1,3]B.(-1,3)C.(-∞,-1]∪[3,+∞)D.(-∞,-1)∪(3,+∞)
因为命题“∃x∈R,x2+(a-1)x+1<0”是真命题等价于关于x的方程x2+(a-1)x +1=0有两个不等的实根,所以Δ=(a-1)2-4>0,即a2-2a-3>0,解得a<-1或a>3,故选D.
全称(存在)量词命题中参数的取值范围问题
解题心得对于含量词的命题中求参数的取值范围的问题,可根据命题的含义,利用等价转化思想将条件合理转化,并利用函数值域(或最值)等解决.
新高考数学一轮复习讲练课件1.2 充分条件与必要条件、全称量词与存在量词(含解析): 这是一份新高考数学一轮复习讲练课件1.2 充分条件与必要条件、全称量词与存在量词(含解析),共37页。
高中数学高考第2讲 充分条件与必要条件、全称量词与存在量词课件PPT: 这是一份高中数学高考第2讲 充分条件与必要条件、全称量词与存在量词课件PPT,共32页。PPT课件主要包含了word部分,点击进入链接等内容,欢迎下载使用。
(新高考)高考数学一轮考点复习1.2《充分条件与必要条件、全称量词与存在量词》课件 (含解析): 这是一份(新高考)高考数学一轮考点复习1.2《充分条件与必要条件、全称量词与存在量词》课件 (含解析)