高端精品高中数学一轮专题-直线与圆锥曲线的位置关系(练)试卷
展开
这是一份高端精品高中数学一轮专题-直线与圆锥曲线的位置关系(练)试卷,共3页。
一、关键点练明
1.(直线与圆锥曲线的位置关系)过点(0,1)作直线,使它与抛物线y2=4x仅有一个公共点,这样的直线有( )
A.1条 B.2条
C.3条 D.4条
2.(弦长公式)过抛物线y=eq \f(1,4)x2的焦点F作一条倾斜角为30°的直线交抛物线于A,B两点,则|AB|=________.
二、易错点练清
1.(忽视相切与交点个数的关系)“直线与双曲线相切”是“直线与双曲线只有一个公共点”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
2.(忽略直线过定点)直线y=kx-k+1与椭圆eq \f(x2,9)+eq \f(y2,4)=1的位置关系为( )
A.相交 B.相切
C.相离 D.不确定
一、综合练——练思维敏锐度
1.直线y=eq \f(b,a)x+3与双曲线eq \f(x2,a2)-eq \f(y2,b2)=1的交点个数是( )
A.1 B.2
C.1或2 D.0
2.过抛物线y2=4x的焦点F的直线l与抛物线交于A,B两点,若A,B两点的横坐标之和为eq \f(10,3),则|AB|=( )
A.eq \f(13,3) B.eq \f(14,3)
C.5 D.eq \f(16,3)
3.过双曲线eq \f(x2,a2)-eq \f(y2,b2)=1(a>0,b>0)的右焦点F且斜率为1的直线与双曲线有且只有一个交点,则双曲线的离心率为( )
A.2 B.eq \f(3,2)
C.eq \r(3) D.eq \r(2)
4.已知直线l与抛物线C:y2=4x相交于A,B两点,若线段AB的中点为(2,1),则直线l的方程为( )
A.y=x-1 B.y=-2x+5
C.y=-x+3 D.y=2x-3
5.(多选)设椭圆的方程为eq \f(x2,2)+eq \f(y2,4)=1,斜率为k的直线不经过原点O,而且与椭圆相交于A,B两点,M为线段AB的中点.下列结论正确的是( )
A.直线AB与OM垂直
B.若点M坐标为(1,1),则直线方程为2x+y-3=0
C.若直线方程为y=x+1,则点M坐标为eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,3),\f(4,3)))
D.若直线方程为y=x+2,则|AB|=eq \f(4\r(2),3)
6.如图,过椭圆C:eq \f(x2,a2)+eq \f(y2,b2)=1(a>b>0)的左顶点A且斜率为k的直线交椭圆C于另一点B,且点B在x轴上的射影恰好为右焦点F.若eq \f(1,3)0)的一个顶点为A(0,-3),右焦点为F,且|OA|=|OF|,其中O为原点.
(1)求椭圆的方程;
(2)已知点C满足3eq \(OC,\s\up7(―→))=eq \(OF,\s\up7(―→)),点B在椭圆上(B异于椭圆的顶点),直线AB与以C为圆心的圆相切于点P,且P为线段AB的中点,求直线AB的方程.
二、自选练——练高考区分度
1.(多选)如图,过点P(2,0)作两条直线x=2和l:x=my+2(m>0)分别交抛物线y2=2x于A,B和C,D(其中A,C位于x轴上方),直线AC,BD交于点Q.则下列说法正确的是( )
A.C,D两点的纵坐标之积为-4
B.点Q在定直线x=-2上
C.点P与抛物线上各点的连线中,PA最短
D.无论CD旋转到什么位置,始终有∠CQP=∠BQP
2.过抛物线y2=mx(m>0)的焦点F作斜率为2eq \r(2)的直线交抛物线于A,B两点,以AB为直径的圆与准线l有公共点M,若|MF|=eq \r(2),则|AB|=________.
3.已知椭圆C:eq \f(x2,a2)+eq \f(y2,b2)=1过点A(-2,-1),且a=2b.
(1)求椭圆C的方程;
(2)过点B(-4,0)的直线l交椭圆C于点M,N,直线MA,NA分别交直线x=-4于点P,Q,求eq \f(|PB|,|BQ|)的值.
相关试卷
这是一份高端精品高中数学一轮专题-高端精品高中数学一轮专题-直线与圆的位置关系(练)试卷,共4页。试卷主要包含了已知直线等内容,欢迎下载使用。
这是一份高端精品高中数学一轮专题-直线与直线方程(练)试卷,共6页。试卷主要包含了已知直线l1等内容,欢迎下载使用。
这是一份高端精品高中数学一轮专题-双曲线(练)试卷,共5页。