高端精品高中数学一轮专题-直线与圆锥曲线的位置关系(讲)教案
展开直线与圆锥曲线的位置关系
核心素养立意下的命题导向
1.掌握解决直线与椭圆、抛物线的位置关系的思想方法,凸显逻辑推理、数学运算的核心素养;
2.了解圆锥曲线的简单应用,凸显数学抽象、数学运算的核心素养.
3.通过学习直线与圆锥曲线的位置关系,凸显直观想象的核心素养.
[理清主干知识]
1.直线与圆锥曲线的位置关系
设直线l:Ax+By+C=0,圆锥曲线C:F(x,y)=0,
由消去y得到关于x的方程ax2+bx+c=0.
(1)当a≠0时,设一元二次方程ax2+bx+c=0的判别式为Δ,则Δ>0⇔直线l与圆锥曲线C有两个公共点;
Δ=0⇔直线l与圆锥曲线C有一个公共点;
Δ<0⇔直线l与圆锥曲线C有零个公共点.
(2)当a=0,b≠0时,圆锥曲线C为抛物线或双曲线.
当C为双曲线时,l与双曲线的渐近线平行或重合,它们的公共点有1个或0个.
当C为抛物线时,l与抛物线的对称轴平行或重合,它们的公共点有1个.
2.圆锥曲线的弦长公式
设斜率为k的直线l与圆锥曲线C相交于A,B两点,A(x1,y1),B(x2,y2),则|AB|=|x1-x2|=·=|y1-y2|=·.
考点一 直线与圆锥曲线的位置关系
[典例] (1)过抛物线y2=2x的焦点作一条直线与抛物线交于A,B两点,它们的横坐标之和等于2,则这样的直线( )
A.有且只有一条 B.有且只有两条
C.有且只有三条 D.有且只有四条
(2)若直线y=kx+1与椭圆+=1总有公共点,则m的取值范围是( )
A.(1,+∞) B.(0,+∞)
C.(0,1)∪(1,5) D.[1,5)∪(5,+∞)
[方法技巧] 直线与圆锥曲线位置关系的判定方法
代数法 | 即联立直线与圆锥曲线方程可得到一个关于x,y的方程组,消去y(或x)得一元方程,此方程根的个数即为交点个数,方程组的解即为交点坐标 |
几何法 | 即画出直线与圆锥曲线的图象,根据图象判断公共点个数 |
[针对训练]
1.若直线mx+ny=4和圆O:x2+y2=4没有交点,则过点(m,n)的直线与椭圆+=1的交点个数为( )
A.至多一个 B.2
C.1 D.0
2.已知双曲线-=1与直线y=2x有交点,则双曲线离心率的取值范围为( )
A.(1,) B.(1,]
C.(,+∞) D.[,+∞)
考点二 弦长问题
[典例] 在平面直角坐标系xOy中,已知椭圆C:+=1(a>b>0)过点P(2,1),且离心率e=.
(1)求椭圆C的方程;
(2)直线l的斜率为,直线l与椭圆C交于A,B两点.求△PAB面积的最大值.
[方法技巧]
求解弦长的4种方法
(1)当弦的两端点坐标易求时,可直接利用两点间的距离公式求解.
(2)联立直线与圆锥曲线方程,解方程组求出两个交点坐标,代入两点间的距离公式求解.
(3)联立直线与圆锥曲线方程,消元得到关于x(或y)的一元二次方程,利用根与系数的关系得到(x1-x2)2,(y1-y2)2,代入两点间的距离公式.
(4)当弦过焦点时,可结合焦半径公式求解弦长.
[针对训练]
1.已知斜率为1的直线l与椭圆+y2=1相交于A,B两点,则|AB|的最大值为( )
A.2 B.
C. D.
2.设斜率为的直线过抛物线C:y2=2px(p>0)的焦点,与C交于A,B两点,且|AB|=,则p=( )
A. B.1
C.2 D.4
3.斜率为的直线过抛物线C:y2=4x的焦点,且与C交于A,B两点,则|AB|=________.
考点三 中点弦问题
[典例] 已知椭圆E:+=1(a>b>0)的离心率为,点A,B分别为椭圆E的左、右顶点,点C在E上,且△ABC面积的最大值为2.
(1)求椭圆E的方程;
(2)设F为E的左焦点,点D在直线x=-4上,过F作DF的垂线交椭圆E于M,N两点.证明:直线OD平分线段MN.
[方法技巧]
1.“点差法”的4步骤
处理有关中点弦及对应直线斜率关系的问题时,常用“点差法”,步骤如下:
2.“点差法”的常见结论
设AB为圆锥曲线的弦,点P为弦AB的中点:
(1)椭圆+=1(a>b>0)中的中点弦问题:kAB·kOP=-;
(2)双曲线-=1(a>0,b>0)中的中点弦问题:kAB·kOP=;
(3)抛物线y2=2px(p>0)中的中点弦问题:kAB=(y0为中点P的纵坐标).
[针对训练]
1.已知椭圆+=1(a>b>0)的一条弦所在的直线方程是x-y+5=0,弦的中点坐标是M(-4,1),则椭圆的离心率是( )
A. B.
C. D.
2.在椭圆+=1中,以点M(1,2)为中点的弦所在直线方程为______________.
3.已知椭圆+=1(a>b>0)过点P,且左焦点与抛物线y2=-4x的焦点重合.
(1)求椭圆的标准方程;
(2)若直线l:y=kx+m(k≠0)与椭圆交于不同的两点M,N,线段MN的中点记为A,且线段MN的垂直平分线过定点G,求k的取值范围.
创新思维角度——融会贯通学妙法
活用抛物线焦点弦的4个结论
设AB是过抛物线y2=2px(p>0)焦点F的弦,若A(x1,y1),B(x2,y2),则
结论1:x1·x2=.
结论2:y1·y2=-p2.
结论3:|AB|=x1+x2+p=(α是直线AB的倾斜角).
结论4:+=为定值(F是抛物线的焦点).
应用(一) 利用结论3或4解决问题
[例1] 过抛物线y2=4x的焦点F的直线l与抛物线交于A,B两点,若|AF|=2|BF|,则|AB|等于( )
A.4 B.
C.5 D.6
应用(二) 利用结论3解决问题
[例2] 设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交C于A,B两点,O为坐标原点,则△OAB的面积为( )
A. B. C. D.
应用(三) 利用结论1或4解决问题
[例3] 如图,过抛物线y2=2px(p>0)的焦点F的直线交抛物线于点A,B,交其准线l于点C,若F是AC的中点,且|AF|=4,则线段AB的长为( )
A.5 B.6
C. D.
高端精品高中数学一轮专题-直线与直线方程(讲)教案: 这是一份高端精品高中数学一轮专题-直线与直线方程(讲)教案,共11页。教案主要包含了知识清单,考点分类剖析,规律方法,变式探究,易错提醒,典例10,典例11,总结提升等内容,欢迎下载使用。
高端精品高中数学一轮专题-椭圆(讲)教案: 这是一份高端精品高中数学一轮专题-椭圆(讲)教案,共9页。
高端精品高中数学一轮专题-椭圆(讲)(带答案)教案: 这是一份高端精品高中数学一轮专题-椭圆(讲)(带答案)教案,共13页。