高端精品高中数学一轮专题-数学归纳法4(带答案)试卷
展开
这是一份高端精品高中数学一轮专题-数学归纳法4(带答案)试卷,共11页。试卷主要包含了在用数学归纳法求证等内容,欢迎下载使用。
数学归纳法参考答案与试题解析第Ⅰ卷(选择题)一.选择题(共10小题,满分50分,每小题5分)1.用数学归纳法证明等式,时,由到时,等式左边应添加的项是( )A. B.C. D.【答案】C【解析】因为要证明等式的左边是连续正整数,所以当由到时,等式左边增加了,故选C.2.用数学归纳法证明时,第一步应验证的不等式是( )A. B.C. D.【答案】B【解析】∵,,∴所取的第一个正整数为2,又,故第一步应验证.故选:B3.用数学归纳法证明等式时,当时,左边等于( )A.1 B. C. D.【答案】C【解析】用数学归纳法证明:,在验证时,令代入左边的代数式,得到左边.故选:C4.用数学归纳法证明,则当时,左端应在的基础上加上( )A. B.C. D.【答案】C【解析】当时,等式左端,当时,等式左端,增加了项.故选:C.5.用数学归纳法证明,成立.那么,“当时,命题成立”是“对时,命题成立”的( )A.充分不必要 B.必要不充分 C.充要 D.既不充分也不必要【答案】B【解析】 “当时,命题成立”不能推出“对时,命题成立”,“对时,命题成立”可以推出“当时,命题成立”,所以“当时,命题成立”是“对时,命题成立”的必要不充分/故选:B6.用数学归纳法证明时,从到,不等式左边需添加的项是( )A. B.C. D.【答案】B【解析】当时,所假设的不等式为,当时,要证明的不等式为,故需添加的项为:,故选:B.7.用数学归纳法证明不等式的过程中,由递推到时,不等式左边( )A.增加了一项B.增加了两项,C.增加了A中的一项,但又减少了另一项D.增加了B中的两项,但又减少了另一项【答案】D【解析】当时,左边,当时,左边,所以,由递推到时,不等式左边增加了,;减少了;故选D8.已知n为正偶数,用数学归纳法证明时,若已假设为偶数)时命题为真,则还需要用归纳假设再证( )时等式成立( )A. B. C. D.【答案】B【解析】若已假设n=k(k≥2,k为偶数)时命题为真,因为n只能取偶数,所以还需要证明n=k+2成立.、故选B.9.用数学归纳法证明命题“当n为奇数时,能被整除”,在证明正确后,归纳假设应写成( ).A.假设时命题成立B.假设时命题成立C.假设时命题成立D.假设时命题成立【答案】D【解析】此题所成立的数是所有的正奇数,根据数学归纳法的证题步骤要求,第二步所取的值的范围应从开始取值所有奇数,即.故选:D.10.在用数学归纳法求证:的过程中,从“到”左边需增乘的代数式为( ).A. B. C. D.【答案】D【解析】当时,左边,当时,左边,则.故选:D.第Ⅱ卷(非选择题)二.填空题(共7小题,单空每小题4分,两空每小题6分,共36分)11.用数学归纳法证明命题“1++…+(n∈N+,且n≥2)”时,第一步要证明的结论是________.【答案】【解析】因为n≥2,所以第一步要证的是当n=2时结论成立,即1+.故答案为:12.用数学归纳法证明关于的恒等式,当时,表达式为,则当时,表达式为_______.【答案】【解析】当时,表达式左侧为:,表达式右侧为:,则当时,表达式为.故答案为:.13.用数学归纳法证明时,第一步应验证的等式是________.【答案】【解析】由题知等式的左边有项,右边有项,且,因此第一步应验证时的等式,此时左边,右边,故答案为:.14.用数学归纳法证明:,第一步应验证的等式是__________;从“”到“”左边需增加的等式是_________.【答案】 【解析】当时,应当验证的第一个式子是,从“”到“”左边需增加的式子是15.用数学归纳法证明:“对任意奇数n,命题成立”时,第二步论证应该是假设______命题成立,再证______时,命题也成立.【答案】 【解析】依题意用数学归纳法证明:“对任意奇数n,命题成立”,由于为奇数,所以第二步论证应该是假设命题成立,再证时命题也成立.故答案为:;16.已知为正偶数,用数学归纳法证明“”时,第一步的验证为________________________;若已假设(且为偶数)时等式成立,则还需要用归纳假设证________时等式成立.【答案】当时,左边,右边,等式成立; 【解析】对在为正偶数,用数学归纳法证明归纳基础,因为为正偶数,则基础,当时,左边,右边,等式成立;归纳假设,当(且为偶数)时,成立由于是所有正偶数,则归纳推广,应到下一个数为时,等式成立故答案为:(1). 当时,左边,右边,等式成立; (2). 17.在数列中,a1=1,,则a3=______,an=_______.【答案】 【解析】第一空:因为,,所以,;第二空:由第一空可知:,所以可得,因为,,,,所以猜想,数学归纳法证明如下:(1)当时,显然;(2)假设当时成立,即,当时,综合(1)(2),所以,故答案为:;三.解答题(共5小题,满分64分,18--20每小题12分,21,22每小题14分)18.在证明,由到的变化过程中,左边增加的部分是什么,右边增加的部分是什么?【答案】;【解析】时,左边为,时,变为,故由到的变化过程中,左边增加的都分是;时,右边为,时,变为,右边增加的部分是.故答案为:;.19.用数学归纳法证明:对任意正整数能被9整除.【答案】见解析【解析】证明:(1)当时,,能被9整除,故当时, 能被9整除.(2)假设当时,命题成立,即能被9整除,则当时,也能被9整除.综合(1)(2)可得, 对任意正整数能被9整除.20.已知数列满足,.(1)求、;(2)猜想数列通项公式,并用数学归纳法给出证明.【答案】(1),;(2),证明见解析.【解析】(1),;(2)猜想数列通项公式,证明如下:当时,,,所以成立;假设时成立,即 ,当时, ,∴时,成立,综上,由①②得: .21.设数列的前项和为,并且满足.猜想的通项公式,并用数学归纳法加以证明.【答案】【解析】(1)解:分别令,得,∵,∴,猜想:,由①可知,当时②①-②得,即当时∵,∴,(ii)假设当时,,那么当时,,∵,∴,∴,即当时也成立.∴,显然时,也成立,故对于一切,均有.22.在数列{an}中,a1=1且(1)求出,,;(2)归纳出数列{an}的通项公式,并用数学归纳法证明归纳出的结论.【答案】(1),,;(2).【解析】(1)由a1=1且 知: , , (2)猜想数列的通项公式为,证明如下:(i)当n=1时,左边=,右边= 左边=右边 即猜想成立;(ii)假设当n=时,猜想成立,即有那么当n=时,从而猜想对n=也成立;由(i)(ii)可知,猜想对任意的都成立,所以数列的通项公式为
相关试卷
这是一份高端精品高中数学一轮专题-数学归纳法1(带答案)试卷,共5页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份高端精品高中数学一轮专题-数学归纳法5(带答案)试卷,共13页。试卷主要包含了已知,则,用数学归纳法证明不等式,用数学归纳法证,数列满足等内容,欢迎下载使用。
这是一份高端精品高中数学一轮专题-数学归纳法4试卷,共4页。试卷主要包含了在用数学归纳法求证等内容,欢迎下载使用。