八年级下册数学期中检测题
展开期中检测题
(时间:120分钟 满分:120分)
一、选择题(每小题3分,共30分)
1.下列二次根式中属于最简二次根式的是( A )
A. B. C. D.
2.(2016·泸州)如图,▱ABCD的对角线AC,BD相交于点O,且AC+BD=16,CD=6,则△ABO的周长是( B )
A.10 B.14 C.20 D.22
,第2题图) ,第5题图) ,第8题图) ,第9题图)
3.在下列以线段a,b,c的长为三边的三角形中,不能构成直角三角形的是( D )
A.a=9,b=41,c=40 B.a=5,b=5,c=5
C.a∶b∶c=3∶4∶5 D.a=11,b=12,c=15
4.(2016·南充)下列计算正确的是( A )
A.=2 B.= C.=x D.=x
5.如图,在△ABC中,点D,E分别是边AB,BC的中点,若△DBE的周长是6,则△ABC的周长是( C )
A.8 B.10 C.12 D.14
6.(2016·益阳)下列判断错误的是( D )
A.两组对边分别相等的四边形是平行四边形 B.四个内角都相等的四边形是矩形
C.四条边都相等的四边形是菱形 D.两条对角线垂直且平分的四边形是正方形
7.若-=(x+y)2,则x-y的值为( C )
A.-1 B.1 C.2 D.3
8.如图,在△ABC中,AC的垂直平分线分别交AC,AB于点D,F,BE⊥DF交DF的延长线于点E,已知∠A=30°,BC=2,AF=BF,则四边形BCDE的面积是( A )
A.2 B.3 C.4 D.4
9.如图,在Rt△ABC中,∠ACB=90°,点D是AB的中点,且CD=,如果Rt△ABC的面积为1,则它的周长为( D )
A. B.+1 C.+2 D.+3
10.(2016·眉山)如图,在矩形ABCD中,O为AC的中点,过点O的直线分别与AB,CD交于点E,F,连接BF交AC于点M,连接DE,BO.若∠COB=60°,FO=FC,则下列结论:①FB垂直平分OC;②△EOB≌△CMB;③DE=EF;④S△AOE∶S△BCM=2∶3.其中正确结论的个数是( B )
A.4个 B.3个 C.2个 D.1个
二、填空题(每小题3分,共24分)
11.若代数式有意义,则x的取值范围为__x≥0且x≠1__.
12.如图,在平行四边形ABCD中,AB=5,AD=3,AE平分∠DAB交BC的延长线于点F,则CF=__2__.
,第12题图) ,第13题图) ,第14题图) ,第15题图)
13.如图,以△ABC的三边为边向外作正方形,其面积分别为S1,S2,S3,且S1=9,S3=25,当S2=__16__时,∠ACB=90°.
14.如图,它是一个数值转换机,若输入的a值为,则输出的结果应为__-__.
15.如图,四边形ABCD是对角线互相垂直的四边形,且OB=OD,请你添加一个适当的条件__答案不唯一,如:OA=OC__,使ABCD成为菱形.(只需添加一个即可)
16.如图,在△ABC中,AB=5,AC=3,AD,AE分别为△ABC的中线和角平分线,过点C作CH⊥AE于点H,并延长交AB于点F,连接DH,则线段DH的长为__1__.
,第16题图) ,第17题图) ,第18题图)
17.(2016·南京)如图,菱形ABCD的面积为120 cm2,正方形AECF的面积为50 cm2,则菱形的边长为__13__ cm.
18.如图,在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A,C的坐标分别为A(10,0),C(0,4),点D是OA的中点,点P为线段BC上的点.小明同学写出了一个以OD为腰的等腰三角形ODP的顶点P的坐标(3,4),请你写出其余所有符合这个条件的P点坐标__(2,4)或(8,4)__.
三、解答题(共66分)
19.(8分)计算:
(1)+2-(-); (2)(4-6)÷-(+)(-).
解:(1)3- (2)0
20.(8分)已知a=-,b=+,求值:
(1)+; (2)3a2-ab+3b2.
解:a+b=2,ab=2,(1)+==12 (2)3a2-ab+3b2=3(a+b)2-7ab=70
21.(8分)如图,四边形ABCD是平行四边形,E,F为对角线AC上两点,连接ED,EB,FD,FB.给出以下结论:①BE∥DF;②BE=DF;③AE=CF.请你从中选取一个条件,使∠1=∠2成立,并给出证明.
解:答案不唯一,如:补充条件①BE∥DF.证明:∵BE∥DF,∴∠BEC=∠DFA,∴∠BEA=∠DFC,∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠BAE=∠DCF,∴△ABE≌△CDF(AAS),∴BE=DF,∴四边形BFDE是平行四边形,∴ED∥BF,∴∠1=∠2
22.(7分)如图,在B港有甲、乙两艘渔船,若甲船沿北偏东60°的方向以每小时8海里的速度前进,乙船沿南偏东某方向以每小时15海里的速度前进,2小时后甲船到M岛,乙船到P岛,两岛相距34海里,你能知道乙船沿哪个方向航行吗?
解:(1)由题意得BM=2×8=16(海里),BP=2×15=30(海里),∵BM2+BP2=162+302=1156,MP2=342=1156,∴BM2+BP2=MP2,∴∠MBP=90°,∴乙船沿南偏东30°的方向航行
23.(8分)如图,四边形ABCD是菱形,BE⊥AD,BF⊥CD,垂足分别为点E,F.
(1)求证:BE=BF;
(2)当菱形ABCD的对角线AC=8,BD=6时,求BE的长.
解:(1)由AAS证△ABE≌△CBF可得 (2)∵四边形ABCD是菱形,∴OA=AC=4,OB=BD=3,∠AOB=90°,∴AB==5,∵S菱形ABCD=AD·BE=AC·BD,∴5BE=×8×6,∴BE=
24.(8分)如图,在四边形ABCD中,AB=AD=2,∠A=60°,BC=2,CD=4.
(1)求∠ADC的度数;
(2)求四边形ABCD的面积.
解:(1)连接BD,∵AB=AD=2,∠A=60°,∴△ABD是等边三角形,∴BD=2,∠ADB=60°,在△BDC中,BD=2,DC=4,BC=2,∴BD2+DC2=BC2,∴△BDC是直角三角形,∴∠BDC=90°,∴∠ADC=∠ADB+∠BDC=150° (2)S四边形ABCD=S△ABD+S△BDC=×2×+×2×4=+4
25.(9分)如图,在▱ABCD中,O是CD的中点,连接AO并延长,交BC的延长线于点E.
(1)求证:△AOD≌△EOC;
(2)连接AC,DE,当∠B=∠AEB=____°时,四边形ACED是正方形,请说明理由.
解:(1)∵四边形ABCD是平行四边形,∴AD∥BC,∴∠D=∠OCE,∠DAO=∠E,∵O是CD的中点,∴OD=OC,∴△AOD≌△EOC(AAS) (2)当∠B=∠AEB=45°时,四边形ACED是正方形,理由:∵△AOD≌△EOC,∴OA=OE,又∵OC=OD,∴四边形ACED是平行四边形,∵∠B=∠AEB=45°,∴AB=AE,∠BAE=90°,∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠COE=∠BAE=90°,∴▱ACED是菱形,∵AB=AE,AB=CD,∴AE=CD,∴菱形ACED是正方形
26.(10分)已知正方形ABCD和正方形EBGF共顶点B,连接AF,H为AF的中点,连接EH,正方形EBGF绕点B旋转.
(1)如图①,当F点落在BC上时,求证:EH=CF;
(2)如图②,当点E落在BC上时,连接BH,若AB=5,BG=2,求BH的长.
解:(1)延长FE交AB于点Q,∵四边形EBGF是正方形,∴EF=EB,∠EFB=∠EBF=45°,∵四边形ABCD是正方形,∴∠ABC=90°,AB=BC,∴∠BQF=∠QBE=45°,∴QE=EB,∴QE=EF,又∵AH=FH,∴EH=AQ,∵∠BQF=∠BFQ=45°,∴BQ=BF,∵AB=BC,∴AQ=CF,∴EH=CF (2)延长EH交AB于点N,∵四边形EBGF是正方形,∴EF∥BG,EF=EB=BG=2,∵EF∥AG,∴∠FEH=∠ANH,∠EFH=∠NAH.又∵AH=FH,∴△ANH≌△FEH(AAS),∴NH=EH,AN=EF.∵AB=5,AN=EF=2,∴BN=AB-AN=3,∵∠NBE=90°,BE=2,BN=3,∴EN==.∵∠NBE=90°,EH=NH,∴BH=EN=
2023-2024学年人教版数学八年级下册期中模拟检测题(含答案): 这是一份2023-2024学年人教版数学八年级下册期中模拟检测题(含答案),共9页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
(2023春)冀教版数学初中八年级下册-黄冈360°定制课时_期中过关检测题: 这是一份(2023春)冀教版数学初中八年级下册-黄冈360°定制课时_期中过关检测题,共4页。
(2023春)冀教版数学初中八年级下册-黄冈360°定制密卷_期中检测题(一): 这是一份(2023春)冀教版数学初中八年级下册-黄冈360°定制密卷_期中检测题(一),共4页。