2020-2021学年2.5 一元一次方程教学设计
展开课题 3.3 解一元一次方程(二)(4)-去分母【学习目标】:1、会根据实际问题中数量关系列方程解决问题,熟练掌握一元一次方程的解法;2、培养学生数学建模能力,分析问题、解决问题的能力;3、培养学生创新能力和挑战自我的意识,增强学生的学习兴趣。【重点难点】:寻找实际问题中的等量关系,建立数学模型。解决问题的能力。【导学指导】一、知识链接1.解方程: ;2.一项工作甲独做5天完成,乙独做10天完成,那么甲每天的工作效率是 ,乙每天的工作效率是 ,两人合作3天完成的工作量是 ,此时剩余的工作量是 。3.一项工作甲独做a天完成,乙独做b天完成,那么甲每天的工作效率是 ,乙每天的工作效率是 ,两人合作3天完成的工作量是 ,此时剩余的工作量是 。二、自主学习问题1:某项工作,甲单独做需要4小时,乙单独做需要6小时,如果甲先做30分钟,然后甲、乙合作,问甲、乙合作还需要多久才能完成全部工作?分析:1. 知识准备 关系:(1)工作量= × (2)工作时间= (3)工作效率= (3)注意:通常设完成全部工作的总工作量为 2. 设甲、乙合作还需要 小时才能完成全部工作3. 相等关系: 列方程 : (课后再解)(师生共同完成)例5 :整理一批图书,由一个人做要40小时完成。现在计划由一部分人先做4小时,再增加两人和他们一起做8小时,完成这项工作.假设这些人的工作效率相同,具体应安排多少人工作?分析:(1)人均效率(一个人做1小时完成的工作量)为 。 (2)有x人先做4小时,完成的工作量为 。再增加2人和前一部分人一起做8小时,完成的工作量为 。 (3)这项工作分两段完成,两段完成的工作量之和为 。(4) 师生共同完成解题过程。解: 归纳:1.工程问题常见相等关系: 2.注意一件工作完成了,总的工作量是“1”;只是完成部分,工作量要由具体情况得出。【课堂练习】:1.一个道路工程,甲队单独施工9天完成,乙队单独做24天完成。现在甲乙两队共同施工3天,因甲另有任务,剩下的工程有乙队完成,问乙队还需几天才能完成?【要点归纳】: 1、通过这节课的学习,你有什么收获? 2、在解决工程问题方面你获得了哪些经验?这些问题中的相等关系有什么特点? 【拓展训练】1、一件工作由一个人做要500小时完成,现在计划由一部分人先做5小时,再增加8人和他们一起做10小时,完成了这项工作,问:先安排多少人工作?【总结反思】:课题 3.4实际问题与一元一次方程(1)【学习目标】1、使学生能根据商品销售问题中的数量关系找出等量关系,列出方程,掌握商品盈亏的求法;2、培养学生分析问题,解决实际问题的能力;3、让学生在实际生活问题中,感受到数学的价值。【学习重点】用列方程的方法解决打折销售问题。【学习难点】准确理解打折销售问题中的利润(利润率)、成本、销售价之间的关系。【导学指导】一、知识链接随着市场经济的不断发展,商品交易成了人们日常生活中最为普遍的一种社会现象,反应在数学上,商品销售问题也成了一类非常重要的实际问题,在商品销售问题中,首先理解几个概念:(1)成本价:有时也称进价,是商家进货时的价格;(2)标价:商家在出售时,标注的价格;(3)售价:消费者购买时真正花的钱数;(4)利润:商品出售后,商家所赚的部分;(5)利润率:商品出售后利润与成本的比值;(6)打折:商家为了促销所采用的一种销售手段,打折就是以标价为基础,按一定比例降价出售,如:打8折,就是按标价的80℅出售。其次掌握几个等量关系式:(1)利润=售价-进价;(2)利润率=℅;(3)实际售价=标价×打折率;尝试练习:1、进价为90元的篮球,卖了120元,利润是 元 ,利润率是 元;2、原价100元的商品打9折后价格为 元; 3、原价100元的商品提价40%后的价格为 元;4、一件衬衣进价为100元,利润率为20% 这件衬衣售价为 ______ 元;5、一台电视售价为1100元,利润率为10%,则这台电视的进价为_____元;6、一件商品按原定价八五折出售,卖价是17元,那么原定价是____元。自主探究自学课本P104探究1:提问:①如何判定是盈还是亏?②盈利率、亏损率指的是什么?③这一问题情境中哪些是已知量?哪些未知量?如何设未知数?相等关系是什么?如何列方程?2.写出正确的、完整的解题过程。【课堂练习】1、两件商品都卖84元,其中一件亏本20%,另一件赢利40%,则两件商品卖后( )。A.赢利16.8元 B.亏本3元 C.赢利3元 D.不赢不亏2、一批校服按八折出售,每件为x元,则这批校服每件的原价为( )A. 80%χ元 B. C. 20%χ元 D. 3、一家三人(父、母、女儿)准备参加旅行团外出旅游,甲旅行社告知:“父母买全票,女儿按半价优惠”,乙旅行社告知:“家庭旅游可按团体票计价,即每人均按8折优惠收费。”若这两家旅行社每人的原票价相同,那么优惠条件是( ) A.甲比乙更优惠 B.乙比甲更优惠; C.甲与乙相同 D.与原票价有关【要点归纳】:1、本节学了哪些知识,有什么感想?2、商品销售中的盈亏是如何计算? 【拓展训练】:1、我们的身边有一些股民,某股民将甲、乙两种股票卖出,甲种股票卖出1500元,盈利20%,乙种股票卖出1600元,但亏损20%,该股民在这次交易中是盈利还是亏损,盈利或亏损多少元?2、小明到书店买书,办会员卡是6.8折,办卡费是20元,不办卡打九折,小明应该怎么办?3、一商店将某种商品按成本价提高40%后标价,元旦期间打8折销售以答谢新老顾客对本商厦的光顾,售价为224元,这件商品的成本价是多少元?【总结反思】:课题:实际问题与一元一次方程(2)【学习目标】:1.掌握经济作物种植问题中的数量关系,能正确列出方程,学会分析问题的方法;2.通过对经济作物种植问题中的探索,体验数学与生活的密切联系,提高学数学用数学的意识和数学建模能力;【重点难点】:经济作物种植问题中如何找等量关系,正确列出方程。【导学指导】一、知识链接1.在购物商场,导游小姐想买一件标价为500元的衣服;一般的商场都是加价100﹪标价,然后只要利润不低于20﹪就可以出售,你能帮导游小姐还价吗?二、自主探究探究2:某村去年种植的油菜籽亩产量达160千克,含油率为40﹪;今年改种新选育的油菜籽后,亩产量提高了20千克,含油率提高了10个百分点。( 1)今年与去年相比,这个村的油菜种植面积减少了44亩,而村榨油厂用本村所产油菜籽的产油量提高20﹪,今年油菜种植面积是多少亩?(2)油菜种植成本为210元/亩,菜油收购价为6元/千克,请比较这个村去、今两年油菜种植成本与菜油全部售出所获收入。先请学生认真读题,后让学生独立思考,最后小组交流解决下列问题:问题中有基本等量关系:产油量=油菜籽亩产量×含油率×种植面积(1)设今年种植油菜x亩,则可列式表示去、今两年的产油量去年产油量=160×40﹪×(x+44)今年产油量= 。根据今年比去年产油量提高20﹪,列出方程180×50﹪x=160×40﹪(x+44)(1+20﹪)解方程,得今年油菜种植面积是 亩(2)去年油菜种植成本为:210(x+44)= 元,售油收入为 ;售油收入与油菜种植成本的差为 今年油菜种植成本为: 元,售油收入为 售油收入与油菜种植成本的差为: 两年相比,油菜种植成本、售油收入有什么变化?油菜种植成本今年比去年减少:210×44=9240 (元)售油收入今年比去年增加:138240-115200=23040 (元)【课堂练习】:1、某企业存入银行甲、乙两种不同性质用途的存款共20万元,甲种存款的年利率为2.5%,乙种存款的年利率为2.25%,该企业一年可获利息4850元,求甲、乙两种存款各多少元?【拓展训练】:1、某工厂按原计划每天生产20个零件,到预定期限还有100个不能完成,若提高工效25%,到期将超额完成50个,则此工厂原计划生产零件多少个?预定期限是多少天?【总结反思】:课题:实际问题与一元一次方程(3)【学习目标】:1、通过对实际问题的分析,掌握用方程计算球赛积分一类问题的方法;2、培养学生分析问题、解决问题的能;【学习重点】:审清题意,分析实际问题中的数量关系,找出解决问题的等量关系。【学习难点】:难点是把生活中的实际问题抽象成数学问题【导学指导】一、知识链接1.你知道篮球比赛时是如何计算积分的?2.如果不知道记分规则,你能从比赛后的积分表中得出来吗?请同学们尝试解决下面的问题。二、自主探究探究3:球赛积分问题:某次篮球联赛积分榜(1)探究某球队总积分与胜、负场数之间的数量关系:若某球队总积分为M,胜场为n,则用含n的式子表示M:M=_____________(2)有人说:在这个联赛中,有一个队的胜场总积分等于它的负场总积分。你认为这个说法正确吗?请说明理由。分析;对于问题(1)要弄清积分与胜负场数的关系,必须清楚胜一场得几分,负一场得几分?表中哪个信息最特别?能马上解决上面哪个问题?另一个问题又如何解决呢?若一球队胜了m场,则负了几场?总积分的代数式如何表示?对于问题(2)能否应用方程知识来说明吗?【课堂练习】:1.初一级进行法律知识竞赛,共有30题,答对一题得4分,不答或答错一题倒扣2分。(1)小明同学参加了竞赛,成绩是96分。请问小明在竞赛中答对了多少题?(2)小王也参加了竞赛,考完后他说:“这次竞赛我一定能拿到100分。”请问小王有没有可能拿到100分?试用方程的知识来说明理由。【要点归纳】:1、列方程解应用题的关键是什么?2、解应用题步骤是什么?3、球赛积分问题的等量关系是什么? 4、列方程解应用题除正确列出方程求出解外,还要注意什么?【拓展训练】:1.在一次有12支球队参加的足球循环赛中(每两队必须赛一场),规定胜一场3分,平一场1分,负一场0分,某队在这次循环赛中所胜场数比所负的场数多两场,结果得18分,那么该队胜了几场?2、在一次数学竞赛中,共有60题选择题,答对一题得2分。答错一题扣1分,不答题不得分也不扣分。(1)小华在竞赛中有2题忘记回答,结果他得了92分。问小华答对了多少题?(2)小胡放言:“我就算有3题没做也能拿100分。”请问小胡这个说法正不正确?说明理由【总结反思】: 第四章 图形认识初步课题 4.1.1认识几何图形【学习目标】:1、通过观察生活中的大量图片或实物,经历把实物抽象成几何图形的过程;2、能识别一些简单几何体,正确区分平面图形与立体图形。3经历从不同方向观察物体的活动过程,初步体会从不同方向观察同一物体可能看到不一样的结果,了解为什么要从不同方向看;4.能画出从不同方向看一些基本几何体(直棱柱、圆柱、圆锥、球)【学习重点】:识别一些基本几何体(直棱柱、圆柱、圆锥、球)以及它们的简单组合得到的平面图形【学习难点】:画出从正面、左面、上面看正方体及简单组合体的平面图形导学指导】一、知识链接多媒体演示庐山景观,请学生背诵苏东坡《题西林壁》并说说诗中意境。横看成岭侧成峰,远近高低各不同。不识庐山真面目,只缘身在此山中。二、自主探究1.几何图形(1)仔细观察图4.1-1,让同学们感受是丰富多彩的图形世界;(2)出示一个长方体的纸盒,让同学们观察图4.1-2回答问题:从整体上看,它的形状是什么?从不同侧面看,你看到了什么图形?只看棱、顶点等局部,你又看到了什么? (1)纸盒(1)长方体(2)长方形(3)正方形(4)线段 点我们见过的长方体、圆柱、圆锥、球、圆、线段、点,以及小学学习过的三角形、四边形等,都是从形形色色的物体外形中得出的。我们把这些图形称为几何图形。2.立体图形长方体、正方体、球、圆柱、圆锥等它们各部分不都在同一平面内,它们是立体图形。3.平面图形平面图形的概念4.说一说:分别从正面、左面、上面观察乒乓球、粉笔盒、茶叶盒,各能得到什么平面图形?(出示实物).画一画:长方体、圆锥分别从正面、左面、上面观察,各能得到什么图形?试着画一画.(出示实物)这样,我们将立体图形转化成了平面图形.探究活动1:从正面、左面、上面观察得到的平面图形你能画出来吗?【课堂练习】:课本120页练习1【要点归纳】:1.本节课我们主要学习了什么?2. 本节课我们有哪些收获?【拓展训练】1. 如图是由七个相同的小正方体堆成的物体,从上面看这个物体的图是( )A. B. C. D.2.右图是由几个小立方块所搭几何体的俯视图,请画出这个几何体的主视图和左视图。1212课题4.1.1几何图形(2)【学习目标】:1.能直观认识立体图形和展开图,了解研究立体图形方法。2.通过观察和动手操作,经历和体验平面图形和立体图形相互转换的过程,培养动手操作能力,初步建立空间观念,发展几何直觉。【学习重点】:了解基本几何体与其展开图之间的关系,体会一个立体按照不同方式展开可得到不同的平面展开图。【学习难点】:正确判断哪些平面图形可以折叠为立体图形;某个立体图形的展开图可以是哪些平面图形【导学指导】一、知识链接我们把一些像墨水瓶盒、粉笔盒这样的纸盒沿它的表面适当剪开,可以展平成平面图形。这样的平面图形叫做相应立体图形的展开图。你知道长方体、圆柱、圆锥和三棱柱的展开图是什么样子的吗?想象一下。二、自主探究(一)、立体图形的展开1、试一试:在你想象的基础上,请将准备好的长方体、圆柱、圆锥和三棱柱的纸盒剪开展平,看看与下面的展开图一样吗?圆柱 圆锥 三棱柱 长方体思考:请你指出上面展开图各部分与几何体的哪一部分相对应?2、剪一剪、画一画:动手把一个立方体的包装盒沿一边剪开,铺平,看看它的展开图由哪些平面图形组成;再把展开的纸板复原,你有什么体会? 再将所有的展开图画出来,以上画出了部分了展开图,除此之外还有5种,共有11种, 请你画出其余5种。(二)、立体图形的折叠探究:下图是一些立体图形的展开图,用它们能围成怎样的立体图形?凭想象回答,回答不出来的,就把它画在纸片上,剪下来折叠。做一做:下面是一些常见几何体的展开图,你能正确说出这些几何体的名字么? 【课堂练习】:课本121页练习2【要点归纳】:1.我知道了什么?2.我学会了什么?3.我发现了什么?【拓展训练】1.下列图形中,不是正方体的表面展开图的是( )A. B. C. D.建设和谐沾益益2. 一个正方体的平面展开图如图所示,将它折成正方体后“建”字对面是( )A.和 B.谐 C.沾 D.益【总结反思】:课题 4.1.2点、线、面、体【学习目标】:(1)了解几何体、平面和曲面的意义,能正确判定围成几何体的面是平面还是曲面; (2)了解几何图形构成的基本元素是点、线、面、体及其关系,能正确判定由点、面、体经过运动变化形成的简单的几何图形;【学习重点】:正确判定围成立体图形的面是平面还是曲面,探索点、线、面、体之间的关系。【学习难点】:探索点、线、面、体运动变化后形成的图形。 【导学指导】 一、温故知新 1.出示一个长方体模型,请同学们认真观察。 2.回答问题:这个长方体有几个面?面与面相交成了几条线?线与线相交成几个 点? 二、自主探究 1.经过学生的独立思考,然后在小组中进行交流,在小组讨论中,评价并修正自己的结论。(教师进行巡视,及时给予指导,教师对学生分布的答案作鼓励性评价)。 2.几何体的概念(1)长方体是一个几何体,我们还学过哪些几何体?_______________________________________________________________________;(2)观察长方体和圆柱体,说出围成这两个几何体的面有哪些?这些面有什么区别? 3.面的分类 通过对上面问题的解决,得出面的分类:____面和___面。 面与面相交成线,线有___线和____线;线与线相交成_____; 4. 点、线、面、体 教师指导学生看课本第121~122页内容,观察图片能发现什么结论?点、线、面、体的关系:点动成_____,线动成___________,面动成________。请你再举出生活中的一些实例: 5.点、线、面、体与几何图形关系. 指导学生阅读课本第123页内容,总结出点、线、面、体与几何图形的关系 几何图形都是由_______________________组成的,________是构成图形的基本元素。【课堂练习】 课本第122页练习1、2;【要点归纳】:1.本节课我们主要学习了什么?2. 本节课我们有哪些收获? 【拓展训练】: 1.人在雪地上走,他的脚印形成一条_______,这说明了______的数学原理; 2.体是由_______围成的,面和面相交形成_______,线和线相交形成______; 3.点动成________,线动成______,面动成_______; 4.将三角形绕直线L旋转一周,可以得到如下图所示立体图形的是( ) A B C D 【总结反思】:队名比赛场次胜场负场积分前进1410424东方1410424光明149523蓝天149523雄鹰147721远大147721卫星1441018钢铁1401414
初中数学北京课改版七年级上册第二章 一元一次方程2.5 一元一次方程教案设计: 这是一份初中数学北京课改版七年级上册第二章 一元一次方程2.5 一元一次方程教案设计,
初中数学北京课改版七年级上册2.5 一元一次方程教案: 这是一份初中数学北京课改版七年级上册2.5 一元一次方程教案,
北京课改版七年级上册第二章 一元一次方程2.5 一元一次方程教案: 这是一份北京课改版七年级上册第二章 一元一次方程2.5 一元一次方程教案,