高考物理总复习4.4万有引力定律及其应用课件PPT
展开一、开普勒行星运动定律
2.适用条件:只适用于 质点 间的相互作用。 3.理解(1)两 质量 分布均匀的球体间的相互作用,也可用本定律来计算,其中r为两球心间的距离。 (2)一个质量分布均匀的球体和球外一个质点间的万有引力的计算也适用,其中r为质点到球心间的距离。
四、地球卫星1.卫星的轨道(1)赤道轨道:卫星的轨道在赤道平面内,同步卫星就是其中的一种。(2)极地轨道:卫星的轨道过南北两极,即在垂直于赤道的平面内,如极地气象卫星。(3)其他轨道:除以上两种轨道外的卫星轨道。所有卫星的轨道平面一定通过地球的球心。
2.地球同步卫星相对于地面静止且与地球自转具有相同周期的卫星叫地球同步卫星。同步卫星有以下特点(1)轨道平面一定:轨道平面与 赤道平面 共面。 (2)周期一定:与地球自转周期 相同 ,即T= 24 h 。 (3)角速度一定:与地球自转的角速度 相同 。
卫星离地面高度h=r-R≈6R(为恒量35 786 km)。(5)绕行方向一定:与地球自转的方向一致。
3.极地卫星和近地卫星(1)极地卫星运行时每圈都经过 南北两极 ,由于地球自转,极地卫星可以实现全球覆盖。 (2)近地卫星是在地球表面附近环绕地球做匀速圆周运动的卫星,其运行的轨道半径可近似认为等于 地球的半径 ,其运行线速度约为 7.9 km/s。
五、经典时空观和相对论时空观1.经典时空观(1)在经典力学中,物体的质量是不随 速度 的改变而改变的。 (2)在经典力学中,同一物理过程发生的位移和对应时间的测量结果在不同的参考系中是 相同的 。 2.相对论时空观同一过程的位移和时间的测量与参考系 有关 ,在不同的参考系中 不同 。 3.经典力学有它的适用范围只适用于 低速 运动,不适用于 高速 运动;只适用于 宏观 世界,不适用于 微观 世界。
1.(2016·全国卷Ⅲ)关于行星运动的规律,下列说法符合史实的是( )A.开普勒在牛顿定律的基础上,导出了行星运动的规律B.开普勒在天文观测数据的基础上,总结出了行星运动的规律C.开普勒总结出了行星运动的规律,找出了行星按照这些规律运动的原因D.开普勒总结出了行星运动的规律,发现了万有引力定律
A.公式只适用于星球之间的引力计算,不适用于质量较小的物体B.当两物体间的距离趋近于0时,万有引力趋近于无穷大C.两物体间的万有引力也符合牛顿第三定律D.公式中引力常量G的值是牛顿规定的
3.(多选)天文学家发现某恒星有一颗行星在圆形轨道上绕其做匀速圆周运动,并测出了行星的轨道半径和运行周期。由此可推算出( )A.恒星的质量B.恒星的平均密度C.行星的质量D.行星运行的速度大小
4.(多选)“马航失联”事件发生后,中国在派出水面和空中力量的同时,在第一时间紧急调动了21颗卫星参与搜寻。“调动”卫星的措施之一就是减小卫星环绕地球运动的轨道半径,降低卫星运行的高度,以有利于发现地面(或海洋)目标。下面说法正确的是( )A.轨道半径减小后,卫星的环绕速度减小B.轨道半径减小后,卫星的环绕速度增大C.轨道半径减小后,卫星的环绕周期减小D.轨道半径减小后,卫星的环绕周期增大
5.(2017·湖南十校联考)银河系的恒星中大约四分之一是双星。某双星由质量不等的星体S1和S2构成,两星在相互之间的万有引力作用下绕两者连线上某一定点O做匀速圆周运动。由天文观察测得它们的运动周期为T,若已知S1和S2的距离为r,引力常量为G,求两星的总质量M。
万有引力定律的理解和应用1.地球表面的重力与万有引力地面上的物体所受地球的吸引力产生两个效果,其中一个分力提供了物体绕地轴做圆周运动的向心力,另一个分力等于重力。(1)在两极,向心力等于零,重力等于万有引力;(2)除两极外,物体的重力都比万有引力小;(3)在赤道处,物体的万有引力分解为两个分力F向和mg刚好在一条直线上,则有F=F向+mg,所以mg=F-F向=
2.地球表面附近(脱离地面)的重力与万有引力物体在地球表面附近(脱离地面)绕地球转时,物体所受的重力等于地球表面处的万有引力,即mg= ,R为地球半径,g为地球表面附近的重力加速度,上式变形得GM=gR2。3.距地面一定高度处的重力与万有引力物体在距地面一定高度h处绕地球转时,mg'= ,R为地球半径,g'为该高度处的重力加速度。
例1(2017·江西抚州模拟)由中国科学院、中国工程院两院院士评出的2012年中国十大科技进展新闻,于2013年1月19日揭晓,“神九”载人飞船与“天宫一号”成功对接和“蛟龙”号下潜突破7 000米分别排在第一、第二。若地球半径为R,把地球看作质量分布均匀的球体。“蛟龙”下潜深度为d,“天宫一号”轨道距离地面高度为h,“蛟龙”号所在处与“天宫一号”所在处的加速度之比为( )
万有引力的“两个推论”推论1:在匀质球壳的空腔内任意位置处,质点受到球壳的万有引力的合力为零,即?F引=0。推论2:在匀质球体内部距离球心r处的质点(m)受到的万有引力等于球体内半径为r的同心球体(M')对其的万有引力,即F=G 。
即学即练1.假设地球是一半径为R、质量分布均匀的球体。一矿井深度为d。已知质量分布均匀的球壳对壳内物体的引力为零。矿井底部和地面处的重力加速度大小之比为( )
2.(2017·江西南昌二模)地球自转周期为T,同一物体在赤道和南极水平面上静止时所受到的支持力之比k,引力常量为G,假设地球可视为质量均匀分布的球体,半径为R。则地球的密度为( )
天体质量和密度的估算天体质量和密度常用的估算方法
例2(2017·北京卷)利用引力常量G和下列某一组数据,不能计算出地球质量的是( )A.地球的半径及重力加速度(不考虑地球自转)B.人造卫星在地面附近绕地球做圆周运动的速度及周期C.月球绕地球做圆周运动的周期及月球与地球间的距离D.地球绕太阳做圆周运动的周期及地球与太阳间的距离
思维点拨地球、人造卫星等做匀速圆周运动,它们受到的万有引力充当向心力,用它们的运动周期表示向心力,由万有引力定律结合牛顿第二定律列式求中心天体的质量,然后由选项条件判断正确的答案。
计算中心天体的质量、密度时的两点区别
1.天体半径和卫星的轨道半径通常把天体看成一个球体,天体的半径指的是球体的半径。卫星的轨道半径指的是卫星围绕天体做圆周运动的圆的半径。卫星的轨道半径大于等于天体的半径。2.自转周期和公转周期自转周期是指天体绕自身某轴线运动一周所用的时间,公转周期是指卫星绕中心天体做圆周运动一周所用的时间。自转周期与公转周期一般不相等。
即学即练3.已知引力常量G,那么在下列给出的各种情景中,能根据测量的数据求出月球密度的是( )A.在月球表面使一个小球做自由落体运动,测出落下的高度H和时间tB.发射一颗贴近月球表面绕月球做圆周运动的飞船,测出飞船运行的周期TC.观察月球绕地球的圆周运动,测出月球的直径D和月球绕地球运行的周期TD.发射一颗绕月球做圆周运动的卫星,测出卫星离月球表面的高度H和卫星的周期T
4.地球围绕太阳的运动可视为匀速圆周运动,其公转速度约为月球绕地球公转速度的30倍,其轨道半径约为月球绕地球公转轨道半径的400倍。已知地球半径R=6 400 km,地球表面的重力加速度g取10 m/s2,引力常量G=6.67×10-11 N·m2/kg2。则太阳的质量约为( )A.2.2×1024 kgB.2.2×1030 kgC.7.3×1028 kgD.3.4×1029 kg
卫星运行参量的比较与计算1.物理量随轨道半径变化的规律
2.卫星的轨道(1)赤道轨道:卫星的轨道在赤道平面内,同步卫星就是其中的一种。(2)极地轨道:卫星的轨道过南北两极,即在垂直于赤道的平面内,如极地气象卫星。(3)其他轨道:除以上两种轨道外的卫星轨道,且轨道平面一定通过地球的球心。
3.同步卫星的六个“一定”
例3(2017·全国卷Ⅲ)2017年4月,我国成功发射的天舟一号货运飞船与天宫二号空间实验室完成了首次交会对接,对接形成的组合体仍沿天宫二号原来的轨道(可视为圆轨道)运行。与天宫二号单独运行时相比,组合体运行的( )A.周期变大B.速率变大C.动能变大D.向心加速度变大
利用万有引力定律解决卫星运动的技巧1.一个模型天体(包括卫星)的运动可简化为质点的匀速圆周运动模型。2.两组公式
3.a、v、ω、T均与卫星的质量无关,只由轨道半径和中心天体质量共同决定,所有参量的比较,最终归结到半径的比较。
即学即练5.(2017·天津卷)我国自主研制的首艘货运飞船“天舟一号”发射升空后,与已经在轨运行的“天宫二号”成功对接形成组合体。假设组合体在距地面高为h的圆形轨道上绕地球做匀速圆周运动,已知地球的半径为R,地球表面处重力加速度为g,且不考虑地球自转的影响。则组合体运动的线速度大小为 ,向心加速度大小为 。
6.(多选)(2017·江苏卷)天舟一号货运飞船于2017年4月20日在文昌航天发射中心成功发射升空。与天宫二号空间实验室对接前,天舟一号在距地面约380 km的圆轨道上飞行,则其( )A.角速度小于地球自转角速度B.线速度小于第一宇宙速度C.周期小于地球自转周期D.向心加速度小于地面的重力加速度
多星系统模型1.双星(1)各自所需的向心力由彼此间的万有引力相互提供,
(2)两颗星的周期及角速度都相同,即T1=T2,ω1=ω2。(3)两颗星的半径与它们之间的距离关系:r1+r2=l。
2.多星(1)三星模型:①三颗星位于同一直线上,两颗质量均为m的环绕星围绕中央星在同一半径为R的圆形轨道上运行(如图甲所示)。②三颗质量均为m的星体位于等边三角形的三个顶点上(如图乙所示)。
(2)四星模型:①四颗质量相等的星体位于正方形的四个顶点上,沿着外接于正方形的圆形轨道做匀速圆周运动(如图丙所示)。②三颗质量相等星体始终位于正三角形的三个顶点上,另一颗位于中点O,外围三颗星绕O做匀速圆周运动(如图丁所示)。
例4(2018·山东潍坊期中)如图所示,质量分别为m和M的两个星球A和B在引力作用下都绕O点做匀速圆周运动,星球A和B两者中心之间的距离为L。已知A、B和O三点始终共线,A和B分别在O的两侧,引力常量为G。(1)求两星球做圆周运动的周期;(2)在地月系统中,若忽略其他星球的影响,可以将月球和地球看成上述星球A和B,月球绕其轨道中心运行的周期记为T1。但在近似处理问题时,常常认为月球是绕地心做圆周运动的,这样算得的运行周期记为T2。已知地球和月球的质量分别为5.98×1024kg和7.35×1022kg。求T2与T1两者二次方之比。(结果保留3位小数)
解析:(1)A和B绕O做匀速圆周运动,它们之间的万有引力提供向心力,则A和B的向心力大小相等,且A和B和O始终共线,说明A和B有相同的角速度和周期,因此有mω2r=Mω2R,r+R=L
将月球看作绕地心做圆周运动,根据牛顿第二定律和万有引力定律得
例5宇宙空间有一种由三颗星体A、B、C组成的三星体系,它们分别位于等边三角形ABC的三个顶点上,绕一个固定且共同的圆心O做匀速圆周运动,轨道如图中实线所示,其轨道半径rA
解析:三星系统是一种相对稳定的结构,它们做圆周运动的角速度是相等的,根据a=ω2r,结合rA
思维点拨三星体做圆周运动的角速度ω、周期T相等,根据线速度与角速度的关系判断线速度的大小关系;写出向心加速度表达式判断加速度的大小关系;由万有引力定律,分别求出单个的力,然后求出合力,分析质量关系即可。
即学即练7.银河系的恒星中大约四分之一是双星。某双星由质量不等的黑体S1和S2构成,两星在相互之间的万有引力作用下绕两者的连线上某一定点C做匀速圆周运动。由天文观察测得其运动周期为T,S1到C点的距离为r1,S1和S2的距离为r,已知引力常量为G,由此可求出S2的质量为多少?
解析:某双星由质量不等的星体S1和S2构成,两星在相互之间的万有引力作用下绕两者连线上某一定点C做匀速圆周运动。根据万有引力提供向心力有
8.(2017·山东枣庄一模)2016年12月17日是我国发射“悟空”探测卫星二周年纪念日,一年来的观测使人类对暗物质的研究又进了一步。宇宙空间中两颗质量相等的星球绕其连线中心转动时,理论计算的周期与实际观测周期不符,且 =k(k>1);因此,科学家认为,在两星球之间存在暗物质。假设以两星球球心连线为直径的球体空间中均匀分布着暗物质,两星球的质量均为m;那么,暗物质质量为( )
解析:双星均绕它们的连线的中点做圆周运动,设它们之间的距离为L,万有引力提供向心力得
这种差异是由双星内均匀分布的暗物质引起的,均匀分布在球体内的暗物质对双星系统的作用与一质量等于球内暗物质的总质量m',位于中点O处的质点的作用相同。
9.(多选)宇宙间存在一些离其他恒星较远的三星系统。其中有一种三星系统如图所示,三颗质量均为m的星体位于等边三角形的三个顶点上,三角形边长为R,忽略其他星体对它们的引力作用,三星在同一平面内绕三角形中心O做匀速圆周运动,引力常量为G。则每颗星( )A.做圆周运动的加速度与三星的质量无关
万有引力定律及其应用-高考物理一轮复习课件PPT: 这是一份万有引力定律及其应用-高考物理一轮复习课件PPT,共35页。PPT课件主要包含了知识梳理,典例精析,课堂练习,课后练习等内容,欢迎下载使用。
高中物理高考 专题一第四讲 万有引力定律及其应用—2021届高考物理二轮总复习课件: 这是一份高中物理高考 专题一第四讲 万有引力定律及其应用—2021届高考物理二轮总复习课件,共60页。PPT课件主要包含了内容索引,体系构建真题感悟,网络构建,高考真题,答案D,答案B,答案A,答案C,答案BC,高频考点能力突破等内容,欢迎下载使用。
2023版高考物理一轮总复习第四章第4节万有引力定律及其应用课件: 这是一份2023版高考物理一轮总复习第四章第4节万有引力定律及其应用课件,共45页。PPT课件主要包含了开普勒三定律,扫过的面积,公转周期的二次方,万有引力定律,质量的乘积,距离的二次方成反比,公式F=G,m1m2,三种宇宙速度,同步卫星等内容,欢迎下载使用。