2021年华师大版数学九年级上册《随机事件的概率》期末复习卷(含答案)
展开一、选择题
1.对“某市明天下雨的概率是75%”这句话,理解正确的是( ).
A.某市明天将有75%的时间下雨
B.某市明天将有75%的地区下雨
C.某市明天一定下雨
D.某市明天下雨的可能性较大
2.下列事件中,属于确定事件的是( ).
A.小王参加本次数学考试,成绩是150分
B.黑暗中从5把不同的钥匙中随意摸出一把,用它打开了门
C.打开电视机,任选一个频道,屏幕上正在播放《新闻联播》
D.任取两个正整数,其和大于1
3.抛一枚硬币,正面朝上的可能性是0.5.现在已经抛了三次,都是正面朝上.若抛第四次,
则正面朝上的可能性( ).
A.大于0.5 B.等于0.5 C.小于0.5 D.无法判断
4.如图所示,从图中的四张印有品牌标志图案的卡片中任取一张,取出图案是轴对称图形的卡片的概率是( ).
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D.1
5.在同一副扑克牌中抽取2张“方块”,3张”梅花”,1张“红桃”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为( )
A. B. C. D.
6.四张质地、大小相同的卡片上,分别画上如下图所示的四个图形,在看不到图形的情况下从中任意抽出一张,则抽出的卡片是轴对称图形的概率是( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D.1
7.如图,在4×4正方形网格中,任取一个白色的小正方形并涂黑,使图中黑色部分的图形构成一个轴对称图形的概率是( )
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
8.如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字﹣1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针恰好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率为( )
A. B. C. D.
9.如图,有以下3个条件:①AC=AB,②AB∥CD,③∠1=∠2.从这3个条件中任选2个作为题设,另1个作为结论,则组成的命题是真命题的概率是( )
A.0 B.1 C.eq \f(2,3) D.eq \f(1,3)
10.学校团委在“五四”青年节举行“感动校园十大人物”颁奖活动,九(4)班决定从甲、乙、丙、丁四人中随机派两名代表参加此活动,则甲、乙两人恰有一人参加此活动概率是( ).
A. SKIPIF 1 < 0 B. SKIPIF 1 < 0 C. SKIPIF 1 < 0 D. SKIPIF 1 < 0
11.小李与小陈做猜拳游戏,规定每人每次至少要出一个手指,两人出拳的手指数之和为偶数时小李获胜,那么,小李获胜的概率为( )
A. B. C. D.
12.将A,B两位篮球运动员在一段时间内的投篮情况记录如下:
下面有三个推断:
①投篮30次时,两位运动员都投中23次,所以他们投中的概率都是0.767.
②随着投篮次数的增加,A运动员投中频率总在0.750附近摆动,显示出一定的稳定性,可以估计A运动员投中的概率是0.750.
③投篮达到200次时,B运动员投中次数一定为160次.
其中合理的是( )
A.① B.② C.①③ D.②③
二、填空题
13.下列4个事件:
①异号两数相加,和为负数;
②异号两数相减,差为正数;
③异号两数相乘,积为正数;
④异号两数相除,商为负数.
这4个事件中,必然事件是 ,不可能事件是 ,随机事件是 (填序号).
14.一家医院某天出生了3个婴儿,假设生男生女的机会相同,那么这3个婴儿中,出现2个男婴、1个女婴的概率是 .
15.如图,有甲,乙两个可以自由转动的转盘,若同时转动,则停止后指针都落在阴影区域内的概率是 .
16.从﹣2,﹣1,1,2四个数中,随机抽取两个数相乘,积为大于﹣4小于2的概率是 .
17.不透明袋中装有大小形状质地完全相同的四个不同颜色的小球,颜色分别是红色、白色、蓝色、黄色,从中一次性随机取出2个小球,取出2个小球的颜色恰好是一红一蓝的概率是 .
18.某水果公司购进10 000kg苹果,公司想知道苹果的损坏率,从所有苹果中随机抽取若干进行统计,部分结果如下表:
估计这批苹果损坏的概率为 (结果保留小数点后一位),损坏的苹果约有 kg.
三、解答题
19.从分别标有数字1~10的10张卡片中任意选取两张(不放回),下列事件中,哪些是“必然发生”的?哪些是“随机发生”的?哪些是“不可能发生”的?
(1)两数之和是整数.
(2)两数不相同.
(3)两数的积是偶数.
(4)两数的积是负数.
(5)第一个数是第二个数的2倍.
20.在围棋盒中有x颗黑色棋子和y颗白色棋子,从盒中随机取出一个棋子,它是黑色棋子的概率是.
(1)试写出y与x的函数解析式;
(2)若往盒子中再放入10颗黑色棋子,则取得黑色棋子的概率变为,求x与y的值.
21.某商场,为了吸引顾客,在“白色情人节”当天举办了商品有奖酬宾活动,凡购物满200元者,有两种奖励方案供选择:一是直接获得20元的礼金券,二是得到一次摇奖的机会.已知在摇奖机内装有2个红球和2个白球,除颜色外其它都相同,摇奖者必须从摇奖机内一次连续摇出两个球,根据球的颜色(如表)决定送礼金券的多少.
(1)请你用列表法(或画树状图法)求一次连续摇出一红一白两球的概率.
(2)如果一名顾客当天在本店购物满200元,若只考虑获得最多的礼品券,请你帮助分析选择哪种方案较为实惠.
22.有四张反面完全相同的纸牌A、B、C、D,其正面分别画有四个不同的几何图形,将四张纸牌洗匀正面朝下随机放在桌面上.
(1)从四张纸牌中随机摸出一张,摸出的牌面图形是中心对称图形的概率是 .
(2)小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张,不放回.再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形既是轴对称图形又是中心对称图形,则小亮获胜,否则小明获胜.这个游戏公平吗?请用列表法(或画树状图)说明理由.(纸牌用A、B、C、D表示)若不公平,请你帮忙修改一下游戏规则,使游戏公平.
23.在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小李做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:
(1)请估计:当实验次数为5000次时,摸到白球的频率将会接近 ;(精确到0.1)
(2)假如你摸一次,你摸到白球的概率P(摸到白球)= ;
(3)试验估算这个不透明的盒子里黑球有多少只?
24.某校为了解九年级男同学的体育考试准备情况,随机抽取部分男同学进行了1000米跑步测试.按照成绩分为优秀、良好、合格与不合格四个等级,学校绘制了如下不完整的统计图.
(1)根据给出的信息,补全两幅统计图;
(2)该校九年级有600名男生,请估计成绩未达到良好有多少名?
(3)某班甲、乙两位成绩优秀的同学被选中参加即将举行的学校运动会1000米比赛.预赛分别为A、B、C三组进行,选手由抽签确定分组.甲、乙两人恰好分在同一组的概率是多少?
25.为了掌握九年级600名学生每天的自主学习情况,某校学生会随机抽查了九年级的部分学生,并调查他们每天自主学习的时间.根据调查结果,制作了两幅不完整的统计图(图1,图2),请根据统计图中的信息回答下列问题:
(1)本次调查的学生人数是 人;
(2)图2中α是 度,并将图1条形统计图补充完整;
(3)请估算该校九年级学生自主学习时间不少于1.5小时有 人;
(4)老师想从学习效果较好的4位同学(分别记为A、B、C、D,其中A为小亮)随机选择两位进行学习经验交流,用列表法或树状图的方法求出选中小亮A的概率.
参考答案
1.答案为:D.
2.答案为:D.
3.答案为:B.
4.答案为:C.
5.答案为:A.
6.答案为:A;
7.答案为:A.
8.答案为:C.
9.答案为:B
10.答案为:A.
11.答案为:A.
12.答案为:B.
13.答案为:④,③,①②.
14.答案为.
15.答案为:0.5.
16.答案为:eq \f(1,2).
17.答案为:.
18.答案为:0.1,1000.
19.解:(1)必然发生
(2)必然发生
(3)随机发生
(4)不可能发生
20.解:(1)由题意得=,解得:y=x,
答:y与x的函数解析式是y=x;
(2)根据题意,可得,解方程组可求得:,
则x的值是15,y的值是25.
21.解:(1)树状图为:
∴一共有6种情况,摇出一红一白的情况共有4种,
∴摇出一红一白的概率==;
(2)∵两红的概率P=,两白的概率P=,一红一白的概率P=,
∴摇奖的平均收益是:×18+×24+×18=22,
∵22>20,∴选择摇奖.
22.解:(1)共有4张牌,正面是中心对称图形的情况有3种,
∴游戏不公平.
修改规则:若抽到的两张牌面图形都是中心对称图形(或若抽到的两张牌面图形都是轴对称图形),则小明获胜,否则小亮获胜.
23.解:(1)∵摸到白球的频率为(0.65+0.62+0.593+0.604+0.601+0.599+0.601)÷7≈0.6,
∴当实验次数为5000次时,摸到白球的频率将会接近0.6.
(2)∵摸到白球的频率为0.6,
∴假如你摸一次,你摸到白球的概率P(白球)=0.6.
(3)盒子里黑颜色的球有40×(1﹣0.6)=16.
24.解:(1)抽取的学生数:16÷40%=40(人);
抽取的学生中合格的人数:40﹣12﹣16﹣2=10,
合格所占百分比:10÷40=25%,
优秀人数:12÷40=30%,
如图所示:
;
(2)成绩未达到良好的男生所占比例为:25%+5%=30%,
所以600名九年级男生中有600×30%=180(名);
(3)如图:
,
可得一共有9种可能,甲、乙两人恰好分在同一组的有3种,
所以甲、乙两人恰好分在同一组的概率P=eq \f(1,3).
25.解:(1)∵自主学习的时间是1小时的有12人,占30%,
∴12÷30%=40,故答案为:40;
(2)×360°=54°,故答案为:54;40×35%=14;
补充图形如图:故答案为:54;
(3)600×=330;故答案为:330;
(4)画树状图得:
∵共有12种等可能的结果,选中小亮A的有6种,
∴P(A)=.
球
两红
一红一白
两白
礼金券(元)
18
24
18
初中数学华师大版九年级上册第25章 随机事件的概率综合与测试综合训练题: 这是一份初中数学华师大版九年级上册第25章 随机事件的概率综合与测试综合训练题,共10页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
初中数学第25章 随机事件的概率综合与测试随堂练习题: 这是一份初中数学第25章 随机事件的概率综合与测试随堂练习题,共3页。试卷主要包含了有一则笑话,25等内容,欢迎下载使用。
初中数学华师大版九年级上册第25章 随机事件的概率综合与测试单元测试课堂检测: 这是一份初中数学华师大版九年级上册第25章 随机事件的概率综合与测试单元测试课堂检测,共16页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。