![2020-2021学年黑龙江省农垦建三江管理局第一高级中学高二上学期期中考试 数学(理) word版练习题第1页](http://img-preview.51jiaoxi.com/3/3/12361381/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2020-2021学年黑龙江省农垦建三江管理局第一高级中学高二上学期期中考试 数学(理) word版练习题第2页](http://img-preview.51jiaoxi.com/3/3/12361381/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2020-2021学年黑龙江省农垦建三江管理局第一高级中学高二上学期期中考试 数学(理) word版练习题
展开
这是一份2020-2021学年黑龙江省农垦建三江管理局第一高级中学高二上学期期中考试 数学(理) word版练习题,共5页。试卷主要包含了椭圆的焦点坐标是,下列说法正确的是等内容,欢迎下载使用。
黑龙江省农垦建三江管理局第一高级中学2020-2021学年高二上学期期中考试 数学(理) 考试说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟。(1) 答题前,考生先将自己的姓名、准考证号码填写清楚;(2) 请按照题号顺序在各题目的答题区域内作答,在草稿纸、试题上答题无效。第Ⅰ卷(共60分)一、选择题(60分,每题5分)1.椭圆的焦点坐标是( )A., B., C., D.,2.下列说法正确的是( )A.若命题,都是真命题,则命题“”为真命题B.命题“若,则或”的否命题为“若,则或”C.“”是“”的必要不充分条件D.命题“,”的否定是“,”3.对于实数m,“”是“方程1表示椭圆”的( )A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件4.已知双曲线的两条渐近线互相垂直,且焦距为,则抛物线的准线方程为( ) A. B. C. D.5.已知命题,命题,则下列判断正确的是A.是假命题B.是真命题C.是假命题 D.是真命题6.已知等差数列的公差为2,若成等比数列,则前10项的和为( )A.10 B.8 C.6 D.-87.设圆的圆心为,点是圆内一定点,点为圆周上任一点,线段的垂直平分线与的连线交于点,则点的轨迹方程为( )A. B.C. D.8.已知椭圆的左、右焦点分别为,,点,在椭圆上,若,且,则椭圆的离心率为( ).A. B. C. D.9.已知椭圆,过M的右焦点作直线交椭圆于A,B两点,若AB中点坐标为,则椭圆M的方程为( )A. B. C. D.10.设抛物线的焦点为,倾斜角为钝角的直线过点且与曲线交于 两点,若 ,则的斜率为( )A. B. C. D.11.已知点为双曲线右支上一点,点,分别为双曲线的左右焦点,点是的内心(三角形内切圆的圆心),若恒有成立,则双曲线的离心率取值范围是( )A. B. C. D.12.已知椭圆的短轴长为2,上顶点为,左顶点为,分别是椭圆的左、右焦点,且的面积为,点为椭圆上的任意一点,则的取值范围为( )A. B. C. D.第Ⅱ卷填空题(共4小题,每题5分,共20分)13.抛物线的焦点坐标是__________.14.若命题“,”为假命题,则实数a的取值范围是______.15.已知抛物线的焦点为,点为抛物线上任意一点,若点,则的最小值为___________;16.设抛物线 ()的焦点为,准线为.过焦点的直线分别交抛物线于两点,分别过作的垂线,垂足.若,且三角形的面积为,则的值为___________.三、解答题(写出文字说明或演算步骤,共70分)17.(10分)(1)已知椭圆中心在原点,一个焦点为,且长轴长是短轴长的2倍,求该椭圆的标准方程;(2)已知双曲线焦点在y轴上,焦距为10,双曲线的渐近线方程为,求双曲线的方程.18.(12分)已知:方程表示焦点在轴上的椭圆.;:不等式有解.(1)若为真命题,求实数的取值范围;(2)若“”为假命题,“”为真命题,求实数的取值范围.19.(12分)设为等差数列的前项和.已知.(1)求数列的通项公式; (2)设,求数列的前项和.20.(12分)已知椭圆的离心率为,且椭圆的右顶点到直线 的距离为3. (1)求椭圆的方程;(2)过点,且斜率为的直线与椭圆交于,两点,求的面积(为坐标原点).21.(12分)已知椭圆C:的离心率为,点P(1,)在椭圆C上,直线l过椭圆的右焦点与椭圆相交于A,B两点.(1)求椭圆C的方程;(2)在x轴上是否存在定点M,使得为定值?若存在,求定点M的坐标;若不在,请说明理由.22.(12分)点与定点的距离和它到直线距离的比是常数.(1)求点的轨迹方程;(2)记点的轨迹为,过的直线与曲线交于点,与抛物线交于点,设,记与面积分别是,求的取值范围.一.DDBBD ADADD BD 14. 15. 5 16.17.解:(1)由题意,该椭圆的焦点在x轴,设椭圆的标准方程为,∴,解得,∴该椭圆的标准方程为;(2)由题意,设双曲线的标准方程为,设焦距为2c,∴,解得,∴该双曲线的方程为.18.(1)当时,不等式显然有解,当时,有解.当时,因为有解,所以,所以.所以当为真命题时,的取值范围为.(2)因为“”为假命题,“”为真命题,所以与必然一真一假.若:方程表示焦点在轴上的椭圆为真命题,方程可化为,则需.由(1)知,若为真,则.所以或,解得或.所以实数的取值范围为. (1)设等差数列的公差为,由题意可得,解得,所以的通项公式为;由得,从而 (1)因为椭圆的右顶点到直线的距离为3,所以,解得. 因为椭圆的离心率为,所以,所以,所以. 故椭圆的方程为.(2)由题意可知直线的方程为,设,,联立,整理得, 则,,从而.故的面积.解:(1)椭圆:的离心率为,可得,, 点在椭圆上,可得,解得,, 椭圆的标准方程为:;(2)假设在轴上存在定点,使得为定值.设,,椭圆的右焦点为,设直线的方程为,联立椭圆方程,化为,则,,.令,解得,可得,因此在轴上存在定点,使得为定值.22.(1)依题意有,化简得:,故的方程为.(2)依题意,①当不垂直于轴时,设的方程是,联立,得,设, ,则,;联立得:,设,,则,,,则,②当垂直于轴时,易知,,此时 综上,的取值范围是.
相关试卷
这是一份2020-2021学年黑龙江省农垦建三江管理局第一高级中学高一上学期期中考试 数学,共4页。试卷主要包含了若函数是幂函数,则实数m的值为,已知命题甲,已知,则的值为,已知集合,或等内容,欢迎下载使用。
这是一份2021黑龙江省农垦建三江管理局一中高一上学期期中考试数学含答案,文件包含高一数学答案doc、高一数学答题卡doc、高一数学试卷doc等3份试卷配套教学资源,其中试卷共7页, 欢迎下载使用。
这是一份2020黑龙江省农垦建三江管理局一中高二下学期4月月考数学(理)试题含答案
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)