八年级下册20.2 数据的波动程度教案设计
展开
这是一份八年级下册20.2 数据的波动程度教案设计,共8页。
20.2 数据的波动程度第1课时 方 差教学目标一、基本目标 【知识与技能】理解方差的概念与作用.【过程与方法】初步经历认识方差的过程,进一步发展学生的统计意识和数据处理能力.【情感态度与价值观】在探究过程中学习科学研究的方法,从而增强学生的自主意识,培养学生的探索精神和创新思维.二、重难点目标【教学重点】方差概念的理解,掌握方差的定义和计算公式.【教学难点】会用方差公式进行计算,会比较数据的波动大小.教学过程环节1 自学提纲,生成问题【5 min阅读】阅读教材P124~P126的内容,完成下面练习.【3 min反馈】1.设有n个数据:x1,x2,…,xn,各数据与它们的平均数的差的平方分别是2,2, …,2 ,我们用这些值的平均数,即用s2= 2+2+…+来衡量这组数据波动的大小,并把它叫做这组数据的方差,记作s2.2.一组数据的方差越大,数据的波动越大;方差越小,数据的波动越小.3.在甲、乙两块试验田内,对生长的禾苗高度进行测量,分析数据得:甲试验田内禾苗高度数据的方差比乙实验田的方差小,则( B )A.甲试验田禾苗平均高度较高B.甲试验田禾苗长得较整齐C.乙试验田禾苗平均高度较高D.乙试验田禾苗长得较整齐环节2 合作探究,解决问题活动1 小组讨论(师生对学)【例1】求数据7,6,8,8,5,9,7,7,6,7的方差.【互动探索】(引发学生思考)先求平均数,在球方差.【解答】(方法一)因为这组数据的平均数为×(7×4+6×2+8×2+5+9)=7,所以s2=[(7-7)2+(6-7)2+(8-7)2+(8-7)2+(5-7)2+(9-7)2+(7-7)2+(7-7)2+(6-7)2+(7-7)2]=1.2.(方法二)将各数据减7,得新数据:0,-1,1,1,-2,2,0,0,-1,0.由题易知,新数据的平均数为0,所以s2=[02+(-1)2+12+12+(-2)2+22+02+02+(-1)2+02-10×02]=1.2.【互动总结】(学生总结,老师点评)计算一组数据的方差和标准差的步骤:先计算该组数据的平均数(或需加减的数值),然后按方差的计算公式计算.【例2】在一次女子排球比赛中,甲、乙两队参赛选手的年龄(单位:岁)如下:甲队:26,25,28,28,24,28,26,28,27,29;乙队:28,27,25,28,27,26,28,27,27,26.(1)两队参赛选手的平均年龄分别是多少?(2)利用方差比较说明两队参赛选手年龄波动的情况.【互动探索】(引发学生思考)(1)根据平均数和方差的公式求解.(2)方差越大(小)其数据波动越大(小).【解答】(1)甲=×(26+25+28+28+24+28+26+28+27+29)=26.9(岁),乙=×(28+27+25+28+27+26+28+27+27+26)=26.9(岁).(2)s=×[(26-26.9)2+(25-26.9)2+…+(29-26.9)2]=2.29,s=×[(28-26.9)2+(27-26.9)2+…+(26-26.9)2]=0.89.因为s> s,所以甲队参赛选手年龄波动比乙队大.【互动总结】(学生总结,老师点评)方差越大(小)其数据波动越大(小).活动2 巩固练习(学生独学)1.在统计中,样本的方差可以反映这组数据的 ( C )A.平均状态 B.分布规律C.离散程度 D.数值大小2.甲、乙两人在相同的条件下,各射靶10次,经过计算:甲、乙射击成绩的平均数都是8环,甲的方差是1.2,乙的方差是1.8.下列说法中不一定正确的是 ( D )A.甲、乙射中的总环数相同B.甲的成绩稳定C.乙的成绩波动较大D.甲、乙的众数相同3.大学新生参加军训,一学生进行五次实弹射击的成绩(单位:环)如下:8,6,10,7,9,则这五次射击的平均成绩是8环,方差是2.4.甲、乙、丙、丁参加体育训练,近期10次跳绳的平均成绩每分钟175个,其方差如下表所示:选手甲乙丙丁方差0.0230.0170.0210.019则这10次跳绳中,这四个人中发挥最稳定的是 乙.5.在一次广场舞比赛中,甲、乙两个队参加表演的女演员的身高(单位: cm)如下:甲队:163,164,165,165,165,165,166,167;乙队:162,164,164,165,165,166,167,167.(1)求甲队女演员身高的平均数、中位数、众数;(2)哪个队女演员的身高更整齐?请从方差的角度说明理由.解:(1)甲队女演员身高的平均数= ×(163+164+165+165+165+165+166+167)=165(cm),把这些数从小到大排列,则中位数是 =165(cm);165 cm出现了4次,出现的次数最多,则众数是165 cm.(2)甲队女演员的身高更整齐,理由如下:乙队女演员的身高平均数=×(162+164+164+165+165+166+167+167)=165(cm),将两组数据各减去165得-2,-1,0,0,0,0,1,2;-3,-1,-1,0,0,1,2,2;甲组数据方差s= ×(4+1+1+4)=1.25(cm2),乙组方差s= ×(9+1+1+1+4+4)=2.5(cm2),∴甲队女演员的身高更整齐.环节3 课堂小结,当堂达标(学生总结,老师点评)用s2= 2+2+…+来衡量这组数据波动的大小,并把它叫做这组数据的方差,记作s2.一组数据的方差越大,数据的波动越大;方差越小,数据的波动越小.练习设计请完成本课时对应练习!第2课时 方差的应用教学目标一、基本目标 【知识与技能】能正确计算方差,根据统计数据作出决策.【过程与方法】经历解决问题作出决策的过程,让学生自主获取数学知识与技能,加深对知识的深层次理解.【情感态度与价值观】在探究过程中学习科学研究的方法,从而增强学生的自主意识,培养学生的探索精神和创新思维.二、重难点目标【教学重点】应用方差做决策问题.【教学难点】综合运用平均数、众数、中位数和方差解决实际问题.教学过程环节1 自学提纲,生成问题【5 min阅读】阅读教材P127的内容,完成下面练习.【3 min反馈】1.当考察的总体包含很多个体,或考察本身带有破坏性时,统计中通常用样本方差来估计总体方差.2.在一次数学答题比赛中,五位同学答对题目的个数分别为7,5,3,5,10,则关于这组数据的说法不正确的是( D )A.众数是5 B.中位数是5C.平均数是6 D.方差是3.63.人数相等的甲、乙两班学生参加同一次数学测验,班级的平均分和方差如下:甲=76,乙=76,s=432,s=350,则成绩较为整齐的班级是 乙.环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】某中学开展“头脑风暴”知识竞赛活动,八年级1班和2班各选出5名选手参加初赛,两个班的选手的初赛成绩(单位:分)分别是:1班:85,80,75,85,100;2班:80,100,85,80,80.(1)根据所给信息将下面的表格补充完整; 平均数中位数众数方差1班初赛成绩 85 702班初赛成绩85 80 (2)根据问题(1)中的数据,判断哪个班的初赛成绩较为稳定,并说明理由.【互动探索】(引发学生思考)(1)利用平均数的定义以及中位数、众数、方差的定义分别求出即可;(2)利用(1)中所求,得出2班初赛成绩的方差较小,因而成绩比较稳定的班级是2班.【解答】(1)由题意,得1=(85+80+75+85+100)=85;2班成绩按从小到大排列为80,80,80,85,100,最中间的数是80,故中位数是80;1班:85,80,75,85,100,其中85出现的次数最多,故众数为85;s=[(80-85)2+(100-85)2+(85-85)2+(80-85)2+(80-85)2]=60.填表如下: 平均数中位数众数方差1班初赛成绩858585702班初赛成绩85808060(2)2班的初赛成绩较为稳定.因为1班与2班初赛的平均成绩相同,而2班初赛成绩的方差较小,所以2班的初赛成绩较为稳定.【互动总结】(学生总结,老师点评)方差是衡量一组数据波动大小的量,方差小的数据更稳定、更整齐.【例2】 某校八年级学生开展踢毽子比赛活动,每班派5名学生参加,按团体总数排列名次,在规定时间内每人踢100个以上(含100个)为优秀,下表是成绩最好的甲、乙两班各5名学生的比赛数据(单位:个). 1号2号3号4号5号总数甲班891009611897500乙班1009611090104500统计发现两班总数相等,此时有人建议,可以通过考查数据中的其他信息来评判.试从两班比赛数据的中位数、方差、优秀率三个方面考虑,你认为应该选定哪一个班为冠军?【互动探索】(引发学生思考)平均数=总成绩÷学生人数;中位数是按从小到大(或从大到小)次序排列后的第3个数;根据方差的计算公式得到数据的方差,根据方差的特征作出决策.【解答】甲班5名学生比赛成绩的中位数是97个,乙班5名学生比赛成绩的中位数是100个.甲班平均数:甲=×500=100(个),乙班平均数:乙=×500=100(个).∴甲班方差为s=[(89-100)2+(100-100)2+(96-100)2+(118-100)2+(97-100)2]=94;乙班方差为s=[(100-100)2+(96-100)2+(110-100)2+(90-100)2+(104-100)2]=46.4.甲班的优秀率为2÷5=40%,乙班的优秀率为3÷5=60%;应选定乙班为冠军.因为乙班5名学生的比赛成绩的中位数比甲班大,方差比甲班小,优秀率比甲班高,综合评定乙班踢毽子水平较好.【互动总结】(学生总结,老师点评)在解决决策问题时,既要看平均成绩,又要看方差的大小,还要分析变化趋势,进行综合分析,从而做出科学的决策.活动2 巩固练习(学生独学)1.为弘扬传统文化,某校初二年级举办传统文化进校园朗诵大赛,小明同学根据比赛中九位评委所给的某位参赛选手的分数,制作了一个表格,如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是( A )中位数众数平均数方差9.29.39.10.3A.中位数 B.众数C.平均数 D.方差2.在一次数学测试中,同年级人数相同的甲、乙两个班的成绩统计如下表:班级平均分中位数方差甲班92.595.541.25乙班92.590.536.06数学老师让同学们针对统计的结果进行一下评估,学生的评估结果如下:①这次数学测试成绩中,甲、乙两个班的平均水平相同;②甲班学生中数学成绩95分及以上的人数少;③乙班学生的数学成绩比较整齐,分化较小.上述评估中,正确的是①③.(填序号)3.射击队为从甲、乙两名运动员中选拔一人参加比赛,对他们进行了六次测试,测试成绩如下表(单位:环): 第一次第二次第三次第四次第五次第六次平均成绩中位数甲108981099a乙107101098b9.5(1)求表中a、b的值;(2)请计算甲六次测试成绩的方差;(3)若乙六次测试成绩的方差为 ,你认为推荐谁参加比赛更合适,请说明理由.解:(1)甲的中位数是a==9;乙的平均数是b=(10+7+10+10+9+8)÷6=9.(2)s= [(10-9)2+(8-9)2+(9-9)2+(8-9)2+(10-9)2+(9-9)2]= .(3)∵甲=乙,s<s,∴推荐甲参加比赛合适.4.为了了解学生关注热点新闻的情况,“两会”期间,小明对班级同学一周内收看“两会”新闻的次数情况作了调查,调查结果统计如图所示(其中男生收看3次的人数没有标出).根据上述信息,解答下列各题:(1)该班级女生人数是____,女生收看“两会”新闻次数的中位数是____;(2)对于某个群体,我们把一周内收看某热点新闻次数不低于3次的人数占其所在群体总人数的百分比叫做该群体对某热点新闻的“关注指数”.如果该班级男生对“两会”新闻的“关注指数”比女生低5%,试求该班级男生人数;(3)为进一步分析该班级男、女生收看“两会”新闻次数的特点,小明给出了男生的部分统计量(如下表).统计量平均数(次)中位数(次)众数(次)方差…该班级男生3342…根据你所学过的统计知识,适当计算女生的有关统计量,进而比较该班级男、女生收看“两会”新闻次数的波动大小.解:(1)20 3(2)该班女生对“两会”新闻的“关注指数”为×100%=65%,所以男生对“两会”新闻的“关注指数”为60%.设该班的男生有x人,则=60%,解得x=25,即该班级男生有25人.(3)该班级女生收看“两会”新闻次数的平均数为=3,女生收看“两会”新闻次数的方差为×[2×(3-1)2+5×(3-2)2+6×(3-3)2+5×20(3-4)2+2×(3-5)2]=.因为2>.所以男生比女生的波动幅度大.环节3 课堂小结,当堂达标(学生总结,老师点评)根据方差做决策练习设计请完成本课时对应训练!
相关教案
这是一份初中数学人教版八年级下册20.2 数据的波动程度教案及反思,共3页。教案主要包含了师生互动,点导评析,监测反馈等内容,欢迎下载使用。
这是一份人教版八年级下册第二十章 数据的分析20.2 数据的波动程度教案,共6页。教案主要包含了复习回顾,出示学习目标,指导学生自学,布置作业等内容,欢迎下载使用。
这是一份初中数学人教版八年级下册第二十章 数据的分析20.2 数据的波动程度第2课时教学设计及反思,共5页。教案主要包含了教学目标,课型,课时,教学重难点,课前准备,教学过程,课后作业,板书设计等内容,欢迎下载使用。