广东省河源市正德中学2021-2022学年级高二上学期第一次段考数学【试卷+答案】
展开河源正德中学2020级高二第一学期高二第一次段考
数 学 试 卷
一、单项选择题:共8小题,每小题5分,共40分.
1.已知集合,,则( )
A. B. C. D.
2.已知复数(为虚数单位),则的共轭复数是( )
A. B. C. D.
3.下列函数中为奇函数的是( )
A.y= cosx B.y=|x|+1 C.y=x3 D.
4.已知圆,则过圆上一点的切线的方程为( )
A. B.或 C. D.
5.如图,四面体-,是底面△的重心,,则( )
A. B.
C. D.
6.“”是“直线和直线垂直”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
7.一束光线从点出发,经轴反射到圆上的最短距离为( )
A.6 B.4 C. D.
8.设是同一个半径为4的球的球面上四点,为等边三角形且其面积为,则三棱锥体积的最大值为( )
A. B. C. D.
二、多项选择题:本题共4小题,每小题5分,共20分,在每小题给出的四个选项中,有多项符合题目要求,全部选对得5分,有选错得0分,部分选对得2分.
9.下列说法中,正确的是( )
A.直线在轴上的截距为
B.直线的倾斜角为
C.,,三点共线
D.过点且在轴上的截距相等的直线的方程为
10.已知圆,点是圆上的动点,则下列说法正确的有( )
A.圆关于直线对称 B.直线与的相交弦长为
C.的最大值为 D.的最小值为
11.给出下列命题,其中正确的命题是( )
A.若,则是钝角
B.若为直线l的方向向量,则λ也是直线l的方向向量
C.若,则可知
D.在四面体中,若,,则
12.如图,正方体的棱长为1,点是棱上的一个动点(包含端点),则下列说法正确的是( )
A.存在点,使面
B.二面角的平面角大小为
C.的最小值是
D.到平面的距离最大值是
三、填空题:本题共4小题,每小题5分,共20分.
13.直线与直线之间的距离是___________.
14.设空间向量,,若,则 ___________.
15.已知定义在上的奇函数,满足,当时,,则的值为___________.
16.已知曲线与直线y=k(x-2)+4有两个交点,则实数k的取值范围是___________.
四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.
17.(本小题10分)已知点,,以为直径的圆记为圆.
(1)求圆的方程;
(2)若过点的直线与圆交于,两点,且,求直线的方程.
18.(本小题12分)为了讴歌中华民族实现伟大复兴的奋斗历程,增进学生对党史的了解,某班级开展党史知识竞赛活动,现把50名学生的成绩绘制了如图所示的频率分布直方图.
(1)求的值并估计这次竞赛成绩的第75百分位数;
(2)用分层抽样的方法从成绩在,两组学生中抽取5人进行培训,再从这5人中随机抽取2人参加校级党史知识竞赛,求这2人来自不同小组的概率.
19.(本小题12分)如图,四棱锥的底面是矩形, 平面,为的中点.
(1)证明:平面平面.
(2)若,,求二面角的余弦值.
20.(本小题12分)在中,角A、B、C的对边分别为a、b、c,且.
(1)求角;
(2)若,,点D在边AC上,且,求BD的长.
21.(本小题12分)如图,在四棱锥中,为等边三角形,平面平面,,二面角的大小为.
(1)求证:平面;
(2)若,点为线段上的点,若直线与平面所成角的正弦值为,求线段的长度.
22.(本小题12分)已知函数关于的不等式的解集为.
(1)求实数的值;
(2)求关于的不等式的解集;
(3)若关于的方程有两个不相等的实数根,求实数的取值范围.
高二第一次考试数学试题参考答案
1.C ,,,
2.D
3.C 解:对于A,,则,所以函数为偶函数,故A错误;
对于B,,则,所以函数为为偶函数,故B错误;
对于C,,则,所以函数为奇函数,故C正确;
对于D,,定义域为,所以函数不具有奇偶性,故D错误.
4.A 因为圆的圆心为,所以,所以切线的斜率,
所以所求切线的方程为,即,
5.B 因为,所以
,
6.A 解:若直线和直线垂直,则,解得或,则“”是“直线和直线垂直”的充分非必要条件.
7.D 解:由题意,圆C的标准方程为, 所以圆C的圆心坐标为,半径,
又点关于轴的对称点为,所以,
所以,所求最短距离为.
8.B 解:如图所示,点M为三角形ABC的中心,E为AC中点,
当平面时,三棱锥体积最大
此时,
, 点M为三角形ABC的中心
中,有
9.BC
对于A:直线在y轴上的截距为-3,故A错误;
对于B:,所以直线的斜率为,
则倾斜角,故B正确;
对于C:由可得,
所以,A、B、C三点共线,故C正确;
对于D:过点且在x、y轴截距相等的直线的方程为或,故D错误.
10.ACD 圆的标准方程是,,半径为,
易得点在直线上,A正确;
点到直线的距离为,弦长为,B错;
由得代入圆的方程整理得,
,,所以的最大值是,C正确;
,,所以的最小值是,D正确.
11.CD
对于A,当时,若,但,不是钝角,所以A错;
对于B,当时,,不是直线的方向向量,所以B错;
对于C,
⇒⇒,所以C对;
对于D,如图,过P作平面ABD交平面于O点,连结CO交AB于M,
连结AO交BC于N,连结BO交AC于T,
同理为垂心,所以,
从而,所以D对;
12.AC
对于A,当与重合时,,根据线面平行的判定,可得面,故正确;
对于B,二面角就是二面角,其平面角大小为.故错;
值为,故正确;
对于D,当与重合时,垂直平面,此时点到面距离最大值为,故错.
故选:AC.
13. 直线可化为:,
由平行直线间距离公式可得所求距离.
14. 因为空间向量,,且,所以,
即,可得,解得:,,所以,,
则,所以.
15.2 因为 令,代入可得 即为周期为2的周期函数
为定义在上的奇函数,则 , 所以
16.. 解:根据题意画出图形,如图所示:
由题意可得:直线过,,
又曲线图象为以为圆心,2为半径的半圆,
当直线与半圆相切,为切点时,圆心到直线的距离,即,解得:;
当直线过点时,直线的斜率为,
则直线与半圆有两个不同的交点时,实数的范围为.
17.(1);(2)或.
(1)由,,得的中点坐标为,即圆心坐标为,半径,…3分
圆的方程为…………4分
(2)由,可得弦心距为…………5分
当直线的斜率不存在时,直线的方程为,
圆心到直线的距离为2,所以满足题意;…………6分
当直线的斜率存在时,设直线方程为 即.…………7分
圆心到直线的距离,解得,直线的方程为…………9分
直线的方程为或.…………10分
18.(1)a=0.020,第75百分位数为;(2).
(1)由直方图得:,解得:,…………2分
前四组频率之和,则第75百分位数在小组,…………4分
∴第75百分位数为:;…………6分
(2)来自小组的有3人记为,,,来自小组的有2人记为,,
从5人中随机抽取2人,基本事件为,,,,,,,,,共10个,…………8分
这2人来自不同组的有,,,,,共6个,…10分
∴这2人来自不同小组的概率为.…………12分
19.(1)因为四边形是矩形,所以.因为平面,AD平面ABCD,所以,………2分
又,所以平面(证平面亦可).……4分
因为平面,所以平面平面.…………5分
(2)以为坐标原点,DA、DC、DP所在的直线为x轴、y轴、z轴建立空间直角坐标系,如图所示,
则,,,所以,.………7分
设平面的法向量为,则,即
令,得. 易知平面的一个法向量为,………9分
所以,………11分
由图可知二面角为钝角,故二面角的余弦值为.………12分
20.(1);(2).
(1)∵,由正弦定理得……1分
∴ ∵,∴,……4分
∵,∴.……6分
(2)设,,则…………7分
在中,.…………8分
在中,①
在,②…………10分
①+②×2:得,综上.………12分
21.(1)在四棱锥中,
因为平面平面,平面平面,,
平面,所以平面;又平面,所以,,所以为二面角的平面角,所以,………2分
又,所以. 又平面,平面,所以平面.………4分
(2)取的中点,连结,则,又,所以,又平面,平面,所以,所以,,两两垂直.………5分
以为坐标原点,,,所在的直线分别为轴建立如图的空间直角坐标系,
则,,,,则,,,…6分
设,,所以………7分
设平面的法向量为,则,即,令,可得,, 所以, ………9分
设直线与平面所成的角为,则,
解得,………11分 所以的长为.………12分
22.(1)因为关于的不等式的解集为,即不等式的解集为,
所以,解得,所以,………2分
(2)由,得,
即,即,故
①若,则;
②若,则不等式无解;
③若,则.
所以当时,解集为,当时,不等式无解,当时,解集为………7分
(3)由(1)得方程可化为令则.
故方程有两个不相等的正实数根,记两个正根是
解得,
实数的取值范围是………12分
2023-2024学年广东省中山市华侨中学高二上学期第一次段考数学试题含答案: 这是一份2023-2024学年广东省中山市华侨中学高二上学期第一次段考数学试题含答案,共18页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。
2023-2024学年广东省江门市第一中学高二上学期第一次段考数学试题含答案: 这是一份2023-2024学年广东省江门市第一中学高二上学期第一次段考数学试题含答案,共17页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。
2022-2023学年广东省佛山市第一中学高二上学期第一次段考试题(10月)数学Word版含答案: 这是一份2022-2023学年广东省佛山市第一中学高二上学期第一次段考试题(10月)数学Word版含答案,共8页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。