![人教版数学八年级上册期末复习试卷15(含答案)01](http://img-preview.51jiaoxi.com/2/3/12255980/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![人教版数学八年级上册期末复习试卷15(含答案)02](http://img-preview.51jiaoxi.com/2/3/12255980/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![人教版数学八年级上册期末复习试卷15(含答案)03](http://img-preview.51jiaoxi.com/2/3/12255980/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
人教版数学八年级上册期末复习试卷15(含答案)
展开人教版数学八年级上册期末复习试卷
一、选择题
1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是( )
A. B. C. D.
2.下列运算中,正确的是( )
A.x3•x3=x6 B.3x2+2x3=5x5
C.(x2)3=x5 D.(ab)3=a3b
3.在,,,﹣0.7xy+y3,,中,分式有( )
A.2个 B.3个 C.4个 D.5个
4.下列由左到右的变形,属于因式分解的是( )
A.(x+2)(x﹣2)=x2﹣4
B.x2﹣4=(x+2)(x﹣2)
C.x2﹣4+3x=(x+2)(x﹣2)+3x
D.x2+4x﹣2=x(x+4)﹣2
5.解分式方程+=3时,去分母后变形为( )
A.2+(x+2)=3(x﹣1) B.2﹣x+2=3(x﹣1)
C.2﹣(x+2)=3(1﹣x) D.2﹣(x+2)=3(x﹣1)
6.三个等边三角形的摆放位置如图,若∠3=60°,则∠1+∠2的度数为( )
A.90° B.120° C.270° D.360°
7.若(a﹣3)2+|b﹣6|=0,则以a、b为边长的等腰三角形的周长为( )
A.12 B.15 C.12或15 D.18
8.如图,已知AB=AC,AE=AF,BE与CF交于点D,则对于下列结论:①△ABE≌△ACF;②△BDF≌△CDE;③D在∠BAC的平分线上.其中正确的是( )
A.① B.② C.①和② D.①②③
二、填空题
9.一个多边形的内角和为900°,则这个多边形的边数为 .
10.若分式的值为零,则x的值等于 .
11.若x2+kx+4是完全平方式,则k的值是 .
12.已知a+b=3,ab=2,则a2b+ab2= .
13.李明同学从家到学校的速度是每小时a千米,沿原路从学校返回家的速度是每小时b千米,则李明同学来回的平均速度是 千米/小时.(用含a,b的式子表示)
14.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M、N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是 .
三、解答题
15.(1)计算:(12a3﹣6a2+3a)÷3a﹣1
(2)因式分解:﹣3x3+6x2y﹣3xy2.
16.(6分)解方程:
(1); (2).
17.化简:,并从﹣1,0,1,2中选择一个合适的数求代数式的值.
18.如图所示,△ABC在正方形网格中,若点A的坐标为(0,3),按要求回答下列问题:
(1)在图中建立正确的平面直角坐标系;
(2)根据所建立的坐标系,写出点B和点C的坐标;
(3)作出△ABC关于x轴的对称图形△A′B′C′.(不用写作法)
19.将4个数a,b,c,d排成2行、2列,两边各加一条竖直线记成,定义=ad﹣bc,上述记号就叫做2阶行列式.若=8,求x的值.
20.小马自驾私家车从A地到B地,驾驶原来的燃油汽车所需的油费108元,驾驶新购买的纯电动汽车所需电费27元.已知行驶1千米,原来燃油汽车所需的油费比新购买的纯电动汽车所需的电费多0.54元,求新购买的纯电动汽车每行驶1千米所需的电费.
21.如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.
(1)求证:△ABE≌△DCE;
(2)当∠AEB=50°,求∠EBC的度数.
22.如图,已知:AD平分∠CAE,AD∥BC.
(1)求证:△ABC是等腰三角形.
(2)当∠CAE等于多少度时△ABC是等边三角形?证明你的结论.
23.已知:如图1,点A是线段DE上一点,∠BAC=90°,AB=AC,BD⊥DE,CE⊥DE,
(1)求证:DE=BD+CE.
(2)如果是如图2这个图形,我们能得到什么结论?并证明.
参考答案与试题解析
一、选择题(本题共8小题,每小题3分,共24分)
1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是( )
A. B. C. D.
【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.
【解答】解:A、是轴对称图形,故A符合题意;
B、不是轴对称图形,故B不符合题意;
C、不是轴对称图形,故C不符合题意;
D、不是轴对称图形,故D不符合题意.
故选:A.
【点评】本题主要考查轴对称图形的知识点.确定轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.
2.下列运算中,正确的是( )
A.x3•x3=x6 B.3x2+2x3=5x5
C.(x2)3=x5 D.(ab)3=a3b
【分析】直接利用幂的乘方与积的乘方法则以及合并同类项、同底数幂的乘法运算法则进而得出答案.
【解答】解:A、x3•x3=x6,正确;
B、3x2+2x3,无法计算,故此选项错误;
C、(x2)3=x6,故此选项错误;
D、(ab)3=a3b3,故此选项错误;
故选:A.
【点评】此题主要考查了幂的乘方与积的乘方以及合并同类项、同底数幂的乘法运算等知识,正确掌握运算法则是解题关键.
3.在,,,﹣0.7xy+y3,,中,分式有( )
A.2个 B.3个 C.4个 D.5个
【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.
【解答】解:在,,,﹣0.7xy+y3,,中,分式有,,,一共3个.
故选:B.
【点评】本题主要考查分式的定义,分母中含有字母则是分式,如果不含有字母则不是分式.
4.下列由左到右的变形,属于因式分解的是( )
A.(x+2)(x﹣2)=x2﹣4
B.x2﹣4=(x+2)(x﹣2)
C.x2﹣4+3x=(x+2)(x﹣2)+3x
D.x2+4x﹣2=x(x+4)﹣2
【分析】根据因式分解的意义,可得答案.
【解答】解:A、是整式的乘法,故A错误;
B、把一个多项式转化成几个整式积的形式,故B正确;
C、没把一个多项式转化成几个整式积的形式,故C错误;
D、没把一个多项式转化成几个整式积的形式,故D错误;
故选:B.
【点评】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式.
5.解分式方程+=3时,去分母后变形为( )
A.2+(x+2)=3(x﹣1) B.2﹣x+2=3(x﹣1)
C.2﹣(x+2)=3(1﹣x) D.2﹣(x+2)=3(x﹣1)
【分析】本题考查对一个分式确定最简公分母,去分母得能力.观察式子x﹣1和1﹣x互为相反数,可得1﹣x=﹣(x﹣1),所以可得最简公分母为x﹣1,因为去分母时式子不能漏乘,所以方程中式子每一项都要乘最简公分母.
【解答】解:方程两边都乘以x﹣1,
得:2﹣(x+2)=3(x﹣1).
故选:D.
【点评】考查了解分式方程,对一个分式方程而言,确定最简公分母后要注意不要漏乘,这正是本题考查点所在.切忌避免出现去分母后:2﹣(x+2)=3形式的出现.
6.三个等边三角形的摆放位置如图,若∠3=60°,则∠1+∠2的度数为( )
A.90° B.120° C.270° D.360°
【分析】先根据图中是三个等边三角形可知三角形各内角等于60°,用∠1,∠2,∠3表示出△ABC各角的度数,再根据三角形内角和定理即可得出结论.
【解答】解:∵图中是三个等边三角形,∠3=60°,
∴∠ABC=180°﹣60°﹣60°=60°,∠ACB=180°﹣60°﹣∠2=120°﹣∠2,
∠BAC=180°﹣60°﹣∠1=120°﹣∠1,
∵∠ABC+∠ACB+∠BAC=180°,
∴60°+(120°﹣∠2)+(120°﹣∠1)=180°,
∴∠1+∠2=120°.
故选:B.
【点评】本题考查的是等边三角形的性质,熟知等边三角形各内角均等于60°是解答此题的关键.
7.若(a﹣3)2+|b﹣6|=0,则以a、b为边长的等腰三角形的周长为( )
A.12 B.15 C.12或15 D.18
【分析】根据非负数的和为零,可得每个非负数同时为零,可得a、b的值,根据等腰三角形的判定,可得三角形的腰,根据三角形的周长公式,可得答案.
【解答】解:由(a﹣3)2+|b﹣6|=0,得
a﹣3=0,b﹣6=0.
则以a、b为边长的等腰三角形的腰长为
6,底边长为3.
周长为6+6+3=15,
故选:B.
【点评】本题考查了非负数的性质,利用非负数的和为零得出每个非负数同时为零是解题关键.
8.如图,已知AB=AC,AE=AF,BE与CF交于点D,则对于下列结论:①△ABE≌△ACF;②△BDF≌△CDE;③D在∠BAC的平分线上.其中正确的是( )
A.① B.② C.①和② D.①②③
【分析】如图,证明△ABE≌△ACF,得到∠B=∠C;证明△CDE≌△BDF;证明△ADC≌△ADB,得到∠CAD=∠BAD;即可解决问题.
【解答】解:如图,连接AD;
在△ABE与△ACF中,
,
∴△ABE≌△ACF(SAS);
∴∠B=∠C;
∵AB=AC,AE=AF,
∴BF=CE;
在△CDE与△BDF中,
,
∴△CDE≌△BDF(AAS),
∴DC=DB;
在△ADC与△ADB中,
,
∴△ADC≌△ADB(SAS),
∴∠CAD=∠BAD;
综上所述,①②③均正确,
故选:D.
【点评】该题主要考查了全等三角形的判定及其性质的应用问题;应牢固掌握全等三角形的判定及其性质定理,这是灵活运用解题的基础.
二、填空题(本题共6小题,每小题3分,共18分)
9.一个多边形的内角和为900°,则这个多边形的边数为 7 .
【分析】本题根据多边形的内角和定理和多边形的内角和等于900°,列出方程,解出即可.
【解答】解:设这个多边形的边数为n,则有
(n﹣2)×180°=900°,
解得:n=7,
∴这个多边形的边数为7.
故答案为:7.
【点评】本题主要考查多边形的内角和定理,解题的关键是根据已知等量关系列出方程从而解决问题.
10.若分式的值为零,则x的值等于 2 .
【分析】根据分式的值为零的条件可以求出x的值.
【解答】解:根据题意得:x﹣2=0,
解得:x=2.
此时2x+1=5,符合题意,
故答案是:2.
【点评】本题主要考查了分式值是0的条件,若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.
11.若x2+kx+4是完全平方式,则k的值是 ±4 .
【分析】这里首末两项是x和2的平方,那么中间项为加上或减去x和2的乘积的2倍也就是kx,由此对应求得k的数值即可.
【解答】解:∵x2+kx+4是一个多项式的完全平方,
∴kx=±2×2•x,
∴k=±4.
故答案为:±4.
【点评】此题考查完全平方公式问题,关键要根据完全平方公式的结构特征进行分析,两数和的平方加上或减去它们乘积的2倍,就构成完全平方式,在任意给出其中两项的时候,未知的第三项均可求出,要注意积的2倍符号,有正负两种情形,不可漏解.
12.已知a+b=3,ab=2,则a2b+ab2= 6 .
【分析】首先将原式提取公因式ab,进而分解因式求出即可.
【解答】解:∵a+b=3,ab=2,
∴a2b+ab2=ab(a+b)=6.
故答案为:6.
【点评】此题主要考查了提取公因式法分解因式,正确找出公因式再分解因式是解题关键.
13.李明同学从家到学校的速度是每小时a千米,沿原路从学校返回家的速度是每小时b千米,则李明同学来回的平均速度是 千米/小时.(用含a,b的式子表示)
【分析】设出从家到学校的路程为x千米,可表示出从家到学校和从学校返回家的时间,再求平均速度即可.
【解答】解:设从家到学校的路程为x千米,
则从家到学校的时间时,
从学校返回家的时间时,
李明同学来回的平均速度是: =千米/时,
故答案为.
【点评】本题考查了列代数式,速度、路程、时间之间的关系:路程=时间•速度.
14.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M、N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是 30 .
【分析】根据角平分线的性质得到DE=DC=4,根据三角形的面积公式计算即可.
【解答】解:作DE⊥AB于E,
由基本尺规作图可知,AD是△ABC的角平分线,
∵∠C=90°,DE⊥AB,
∴DE=DC=4,
∴△ABD的面积=×AB×DE=30,
故答案为:30.
【点评】本题考查的是角平分线的性质、基本作图,掌握角的平分线上的点到角的两边的距离相等是解题的关键.
三、解答题(共9小题,其中15-21题各6分,22-23题各8分,共58分)
15.(6分)(1)计算:(12a3﹣6a2+3a)÷3a﹣1
(2)因式分解:﹣3x3+6x2y﹣3xy2.
【分析】(1)根据多项式除以单项式的法则进行计算即可;
(2)先提公因式,再根据完全平方公式进行因式分解即可.
【解答】解(1)原式=4a2﹣2a+1﹣1
=4a2﹣2a;
(2)原式=﹣3x(x2﹣2xy+y2)
=﹣3(x﹣y)2.
【点评】本题考查了整式的除法,以及因式分解法,掌握运算法则和完全平方公式是解题的关键.
16.(6分)解方程:
(1);(2).
【分析】(1)观察可得方程最简公分母为(x﹣1).去分母,转化为整式方程求解.结果要检验.
(2)观察可得方程最简公分母为(x﹣1)(x+2).去分母,转化为整式方程求解.结果要检验.
【解答】解:(1)2x=3x﹣9,
解得x=9,
经检验x=9是方程的根.
(2)x(x+2)﹣(x+2)(x﹣1)=3,
解得x=1,
经检验x=1是方程的增根.
∴方程无解.
【点评】(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.
(2)解分式方程一定注意要验根.
17.(6分)化简:,并从﹣1,0,1,2中选择一个合适的数求代数式的值.
【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x=2代入计算即可求出值.
【解答】解:原式=•=•=,
当x=2时,原式=.
【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.
18.(6分)如图所示,△ABC在正方形网格中,若点A的坐标为(0,3),按要求回答下列问题:
(1)在图中建立正确的平面直角坐标系;
(2)根据所建立的坐标系,写出点B和点C的坐标;
(3)作出△ABC关于x轴的对称图形△A′B′C′.(不用写作法)
【分析】(1)根据点A的坐标为(0,3),即可建立正确的平面直角坐标系;
(2)观察建立的直角坐标系即可得出答案;
(3)分别作点A,B,C关于x轴的对称点A′,B′,C′,连接A′B′,B′C′,C′A′则△A′B′C′即为所求.
【解答】解:(1)所建立的平面直角坐标系如下所示:
(2)点B和点C的坐标分别为:B(﹣3,﹣1)C(1,1);
(3)所作△A'B'C'如下图所示.
【点评】本题考查了轴对称变换作图,作轴对称后的图形的依据是轴对称的性质,基本作法是:①先确定图形的关键点;②利用轴对称性质作出关键点的对称点;③按原图形中的方式顺次连接对称点.
19.(6分)将4个数a,b,c,d排成2行、2列,两边各加一条竖直线记成,定义=ad﹣bc,上述记号就叫做2阶行列式.若=8,求x的值.
【分析】首先根据2阶行列式的运算法则列出关于x的方程,然后利用多项式乘多项式的法则展开得到关于x的一元一次方程最后这个一元一次方程即可.
【解答】解:根据题意化简得:(x+1)2﹣(1﹣x)2=8,
整理得:x2+2x+1﹣(1﹣2x+x2)﹣8=0,
即4x=8,
解得:x=2.
【点评】本题主要考查的是多项式乘多项式,解一元一次方程,根据二阶行列式的运算法则列出方程是解题的关键.
20.(6分)小马自驾私家车从A地到B地,驾驶原来的燃油汽车所需的油费108元,驾驶新购买的纯电动汽车所需电费27元.已知行驶1千米,原来燃油汽车所需的油费比新购买的纯电动汽车所需的电费多0.54元,求新购买的纯电动汽车每行驶1千米所需的电费.
【分析】设新购买的纯电动汽车每行驶1千米所需的电费x元,根据行驶路程相等列出方程即可解决问题.
【解答】解:设新购买的纯电动汽车每行驶1千米所需的电费x元
根据题意: =,
解得:x=0.18,
经检验:x=0.18是原方程的解,
答:新购买的纯电动汽车每行驶1千米所需的电费是0.18元..
【点评】本题考查分式方程的应用,解题的关键是学会设未知数,寻找等量关系,列出方程解决问题,属于中考常考题型.
21.(6分)如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.
(1)求证:△ABE≌△DCE;
(2)当∠AEB=50°,求∠EBC的度数.
【分析】(1)根据AAS即可推出△ABE和△DCE全等;
(2)根据三角形全等得出EB=EC,推出∠EBC=∠ECB,根据三角形的外角性质得出∠AEB=2∠EBC,代入求出即可.
【解答】(1)证明:在△ABE和△DCE中,
,
∴△ABE≌△DCE(AAS);
(2)解:∵△ABE≌△DCE,
∴BE=EC,
∴∠EBC=∠ECB,
∵∠EBC+∠ECB=∠AEB=50°,
∴∠EBC=25°.
【点评】本题考查了三角形外角性质和全等三角形的性质和判定的应用,主要考查学生的推理能力.
22.(8分)如图,已知:AD平分∠CAE,AD∥BC.
(1)求证:△ABC是等腰三角形.
(2)当∠CAE等于多少度时△ABC是等边三角形?证明你的结论.
【分析】(1)根据角平分线的定义可得∠EAD=∠CAD,再根据平行线的性质可得∠EAD=∠B,∠CAD=∠C,然后求出∠B=∠C,再根据等角对等边即可得证.
(2)根据角平分线的定义可得∠EAD=∠CAD=60°,再根据平行线的性质可得∠EAD=∠B=60°,∠CAD=∠C=60°,然后求出∠B=∠C=60°,即可证得△ABC是等边三角形.
【解答】(1)证明:∵AD平分∠CAE,
∴∠EAD=∠CAD,
∵AD∥BC,
∴∠EAD=∠B,∠CAD=∠C,
∴∠B=∠C,
∴AB=AC.
故△ABC是等腰三角形.
(2)解:当∠CAE=120°时△ABC是等边三角形.
∵∠CAE=120°,AD平分∠CAE,
∴∠EAD=∠CAD=60°,
∵AD∥BC,
∴∠EAD=∠B=60°,∠CAD=∠C=60°,
∴∠B=∠C=60°,
∴△ABC是等边三角形.
【点评】本题考查了等腰三角形的判定,角平分线的定义,平行线的性质,比较简单熟记性质是解题的关键.
23.(8分)已知:如图1,点A是线段DE上一点,∠BAC=90°,AB=AC,BD⊥DE,CE⊥DE,
(1)求证:DE=BD+CE.
(2)如果是如图2这个图形,我们能得到什么结论?并证明.
【分析】(1)先证△AEC≌△BDA得出AD=CE,BD=AE,从而得出DE=BD+CE;
(2)先证△AEC≌△BDA得出AD=CE,BD=AE,从而得出BD=DE+CE.
【解答】证明:(1)∵BD⊥DE,CE⊥DE,
∴∠D=∠E=90°,
∴∠DBA+∠DAB=90°,
∵∠BAC=90°,
∴∠DAB+∠CAE=90°,
∴∠DBA=∠CAE,
∵AB=AC,
∴△ADB≌△CEA,
∴BD=AE,CE=AD,
∴DE=AD+AE=CE+BD;
(2)BD=DE+CE,理由是:
∵BD⊥DE,CE⊥DE,
∴∠ADB=∠AEC=90°,
∴∠ABD+∠BAD=90°,
∵∠BAC=90°,
∴∠ABD+∠EAC=90°,
∴∠BAD=∠EAC,
∵AB=AC,
∴△ADB≌△CEA,
∴BD=AE,CE=AD,
∵AE=AD+DE,
∴BD=CE+DE.
【点评】本题考查了全等三角形的性质和判定,根据同角的余角相等可得∠DBA=∠CAE,熟练掌握全等三角形的判定方法:SSS、SAS、AAS、ASA;对于证明线段的和或差,本题运用全等三角形的对应边相等将三条线段转化到同一直线上,使问题得以解决.
人教版数学八年级上册月考模拟试卷15(含答案): 这是一份人教版数学八年级上册月考模拟试卷15(含答案),共11页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
人教版数学八年级上册期末复习试卷01(含答案): 这是一份人教版数学八年级上册期末复习试卷01(含答案),共14页。试卷主要包含了选择题,填空题等内容,欢迎下载使用。
人教版数学八年级上册期末复习试卷07(含答案): 这是一份人教版数学八年级上册期末复习试卷07(含答案),共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。