终身会员
搜索
    上传资料 赚现金

    备战2022年高考数学压轴题专题2.1 导数起源于切线曲切联系需熟练

    立即下载
    加入资料篮
    备战2022年高考数学压轴题专题2.1 导数起源于切线曲切联系需熟练第1页
    备战2022年高考数学压轴题专题2.1 导数起源于切线曲切联系需熟练第2页
    备战2022年高考数学压轴题专题2.1 导数起源于切线曲切联系需熟练第3页
    还剩15页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    备战2022年高考数学压轴题专题2.1 导数起源于切线曲切联系需熟练

    展开

    这是一份备战2022年高考数学压轴题专题2.1 导数起源于切线曲切联系需熟练,共19页。
    题型综述导数的几何意义:函数处的导数就是曲线在点处的切线的斜率,即【注】曲线的切线的求法:若已知曲线过点P(x0y0),求曲线过点P的切线,则需分点P(x0y0)是切点和不是切点两种情况求解.(1)当点P(x0y0)是切点时,切线方程为yy0=f ′(x0)(xx0);(2)当点P(x0y0)不是切点时,可分以下几步完成:第一步:设出切点坐标P′(x1f (x1));第二步:写出过P′(x1f (x1))的切线方程为yf (x1)=f ′ (x1)(xx1);第三步:将点P的坐标(x0y0)代入切线方程求出x1第四步:将x1的值代入方程yf (x1)=f ′(x1)(xx1),可得过P(x0y0)的切线方程.求曲线y=f (x)的切线方程的类型及方法(1)已知切点P(x0, y0),求y=f (x)过点P的切线方程:求出切线的斜率f ′(x0),由点斜式写出方程;(2)已知切线的斜率为k,求y=f (x)的切线方程:设切点P(x0, y0),通过方程k=f ′(x0)解得x0,再由点斜式写出方程;(3)已知切线上一点(非切点),求y=f (x)的切线方程:设切点P(x0, y0),利用导数求得切线斜率f ′(x0),再由斜率公式求得切线斜率,列方程(组)解得x0,最后由点斜式或两点式写出方程.(4)若曲线的切线与已知直线平行或垂直,求曲线的切线方程时,先由平行或垂直关系确定切线的斜率,再由k=f ′(x0)求出切点坐标(x0, y0),最后写出切线方程.(5)①在点P处的切线即是以P为切点的切线,P一定在曲线上.②过点P的切线即切线过点PP不一定是切点.因此在求过点P的切线方程时,应首先检验点P是否在已知曲线上.【典例指引】例1(2013全国新课标Ⅰ卷节选)已知函数f(x)=x2+ax+b,g(x)=ex(cx+d),若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2(Ⅰ)求a,b,c,d的值.简析:(Ⅰ)由已知得,而==,∴=4,=2,=2,=2;例2.设函数1)当时,求函数在区间上的最小值;2)当时,曲线在点处的切线为轴交于点求证:例3.已知函数在点处的切线方程为⑴求函数的解析式;⑵若对于区间上任意两个自变量的值都有,求实数的最小值;⑶若过点可作曲线的三条切线,求实数的取值范围.⑶因为点不在曲线上,所以可设切点为因为,所以切线的斜率为=因为过点可作曲线的三条切线,所以方程有三个不同的实数解.所以函数有三个不同的零点..令,则02+  +极大值极小值 ,即,解得 【同步训练】1.设函数,若函数处的切线方程为(Ⅰ)求实数的值;(Ⅱ)求函数上的最大值.【思路引导】(Ⅰ)根据导数的几何意义,可知函数处的导数即为切线的斜率,又点(1,)为切点,列出方程解出a,b的值;(Ⅱ)把a,b的值代入解析式,对函数求导判断单调性,根据单调区间写出函数的最值. 在[,2)上单调递增,在(2,e]上单调递减, 处取得极大值这个极大值也是 的最大值.    所以函数上的最大值为2.已知函数,其导函数的两个零点为-3和0.(1)求曲线在点处的切线方程;(2)求函数的单调区间;(3)求函数在区间上的最值.【思路引导】对函数求导,由于导函数有两个零点,所以这两个零点值满足,解方程组求出m,n;利用导数的几何意义求切线方程,先求 f(1),求出切点,再求得出斜率,利用点斜式写出切线方程,求单调区间只需在定义域下解不等式,求出增区间和减区间;求函数在闭区间上的最值,先研究函数在该区间的单调性、极值,求出区间两端点的函数值,比较后得出最值.所以函数在区间上的最大值为,最小值为-1.3.设函数的定义域为,若对任意,都有,则称函数为“”函数.已知函数的图象为曲线,直线与曲线相切于(1)求的解析式,并求的减区间;(2)设,若对任意,函数为“”函数,求实数的最小值.【思路引导】根据导数的几何意义,借助切点和斜率列方程求出,得出函数的解析式,利用导数解求出函数的单调减区间;对任意,函数为“”函数,等价于在上, ,根据函数的在上的单调性,求出的最值,根据条件求出的范围,得出结论. 上为减函数,且,∴上为减函数,,得 ,∴4.已知函数(1)求的单调区间;(2)设曲线轴正半轴的交点为,曲线在点处的切线方程为,求证:对于任意的正实数,都有(3)若方程为实数)有两个正实数根,求证: 【思路引导】(1)求出原函数的导函数,得到导函数的零点,由零点对定义域分段,根据导函数在各区间段内的符号得到原函数的单调性;(2)设出点的坐标,利用导数求出切线方程,构造辅助函数,利用导数得到对于任意实数,有,即对任意实数,都有;(3)由(2)知,,求出方程的根,,由单调递减,得到,同理得到,根据不等式性质则可证得(3)由(2)知 ,设方程 的根为 ,可得,因为 单调递减,又由(II)知 ,所以 .类似的,设曲线 在原点处的切线为 可得 ,对任意的,有 .设方程 的根为 ,可得 ,因为 单调递增,且 ,因此, 所以5.已知函数处的切线方程为(1)若= ,求证:曲线上的任意一点处的切线与直线和直线围成的三角形面积为定值;【思路引导】根据导数的几何意义,为切线的斜率,解出,写出的切线方程求出三角形的面积为定值.试题解析:证明:(1)因为 f′(x)= ,所以 f′(3)= 又 g(x)=f(x+1)=ax+设g(x)图象上任意一点P(x0,y0)因为 g′(x)=a﹣所以切线方程为y﹣(ax0+)=(a﹣)(x﹣x0令x=0 得y=; 再令y=ax得 x=2x0故三角形面积S=|||2x0|=4,即三角形面积为定值. 6.已知函数(1)若处取得极大值,求实数的取值范围;(2)若,且过点有且只有两条直线与曲线相切,求实数的值.【思路引导】(1)根据条件得,化简得,再根据有极值得中判别式大于零,进而得,最后列表分析极大值条件得解得实数的取值范围;(2)切线条数的确定决定于切点个数,所以设切点,转化为关于切点横坐标的方程,再利用导数研究函数有两零点,即极值为零,解得实数的值.点评:函数极值问题的常见类型及解题策略(1)知图判断函数极值的情况.先找导数为0的点,再判断导数为0的点的左、右两侧的导数符号.(2)已知函数求极值.求→求方程的根→列表检验的根的附近两侧的符号→下结论.(3)已知极值求参数.若函数在点处取得极值,则,且在该点左、右两侧的导数值符号相反.7.已知函数(1)若直线是曲线与曲线的公切线,求【思路引导】(1)设直线切于点,与切于处的切线方程为处的切线方程为.根据这两条直线为同一条直线,可得关于,解得的值,从而可得结果;点评:本题主要考查利用导数的几何意义及利用导数研究函数的单调性,属于难题. 应用导数的几何意义求切点处切线的斜率,主要体现在以下几个方面:(1) 已知切点求斜率,即求该点处的导数;(2) 己知斜率求切点即解方程;(3) 巳知切线过某点 (不是切点) 求切点, 设出切点利用求解.8.已知函数为常数),其图像是曲线(1)设函数的导函数为,若存在三个实数,使得同时成立,求实数的取值范围;(2)已知点为曲线上的动点,在点处作曲线的切线与曲线交于另一点,在点处作曲线的切线,设切线的斜率分别为,问:是否存在常数,使得?若存在,求出的值;若不存在,请说明理由.【思路引导】(1)由于存在唯一的实数,使得同时成立,则,存在唯一的实数根,即存在唯一的实数根,就把问题转化为求函数最值问题;(2)假设存在常数,依据曲线在点处的切线与曲线交于另一点,曲线在点处的切线,得到关于的方程,有解则存在,无解则不存在. ,解得.故当时,存在常数,使得;当时,不存在常数使得9.已知函数(1)若曲线在公共点处有相同的切线,求实数的值;(2)当时,若曲线在公共点处有相同的切线,求证:点唯一;(3)若,且曲线总存在公切线,求:正实数的最小值.【思路引导】(1)曲线在公共点处有相同的切线, ,解出即可;(2)设,由题设得,转化为关于的方程只有一解,进而构造函数转化为函数只有一个零点,利用导数即可证明;(3)设曲线在点处的切线方程为,则只需使该切线与相切即可,也即方程组,只有一解即可,所以消去,问题转化关于方程总有解,分情况借助导数进行讨论即可求得值. ,则,而,显然不成立,所以 从而,方程可化为,则∴ 当时,;当时,,即 上单调递减,在上单调递增.∴的最小值为,所以,要使方程有解,只须,即点评:本题主要考查导数的几何意义、利用导数研究函数的单调性,属于难题. 应用导数的几何意义求切点处切线的斜率,主要体现在以下几个方面:(1) 已知切点求斜率,即求该点处的导数;(2) 己知斜率求切点即解方程;(3) 巳知切线过某点 (不是切点) 求切点, 设出切点利用求解.  

    相关试卷

    高考数学压轴难题归纳总结培优专题2.1 导数起源于切线曲切联系需熟练 (含解析):

    这是一份高考数学压轴难题归纳总结培优专题2.1 导数起源于切线曲切联系需熟练 (含解析),共19页。

    专题04 应用导数研究函数的极(最)值-备战2022高考数学冲破压轴题讲与练:

    这是一份专题04 应用导数研究函数的极(最)值-备战2022高考数学冲破压轴题讲与练,文件包含专题04应用导数研究函数的极最值解析版doc、专题04应用导数研究函数的极最值原卷版doc等2份试卷配套教学资源,其中试卷共35页, 欢迎下载使用。

    专题02 曲线的切线问题探究-备战2022高考数学冲破压轴题讲与练:

    这是一份专题02 曲线的切线问题探究-备战2022高考数学冲破压轴题讲与练,文件包含专题02曲线的切线问题探究解析版doc、专题02曲线的切线问题探究原卷版doc等2份试卷配套教学资源,其中试卷共33页, 欢迎下载使用。

    • 精品推荐
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map