|课件下载
终身会员
搜索
    上传资料 赚现金
    高考数学一轮复习高考大题增分专项一高考中的函数与导数课件文
    立即下载
    加入资料篮
    高考数学一轮复习高考大题增分专项一高考中的函数与导数课件文01
    高考数学一轮复习高考大题增分专项一高考中的函数与导数课件文02
    高考数学一轮复习高考大题增分专项一高考中的函数与导数课件文03
    高考数学一轮复习高考大题增分专项一高考中的函数与导数课件文04
    高考数学一轮复习高考大题增分专项一高考中的函数与导数课件文05
    高考数学一轮复习高考大题增分专项一高考中的函数与导数课件文06
    高考数学一轮复习高考大题增分专项一高考中的函数与导数课件文07
    高考数学一轮复习高考大题增分专项一高考中的函数与导数课件文08
    还剩52页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高考数学一轮复习高考大题增分专项一高考中的函数与导数课件文

    展开
    这是一份高考数学一轮复习高考大题增分专项一高考中的函数与导数课件文,共60页。PPT课件主要包含了-2-,-3-,题型一,题型二,题型三,策略一,策略二,策略三,-4-,-5-等内容,欢迎下载使用。

    从近五年的高考试题来看,高考对函数与导数的考查,已经从直接利用导数的正负讨论函数的单调区间,或利用函数单调性求函数的极值、最值问题,转变成利用求导的方法证明不等式,探求参数的取值范围,解决函数的零点、方程根的问题,以及在某不等式成立的条件下,求某一参数或某两个参数构成的代数式的最值.
    突破策略一 差函数法证明函数不等式f(x)>g(x),可证f(x)-g(x)>0,令h(x)=f(x)-g(x),或令h(x)为f(x)-g(x)表达式的某一部分,利用导数证明h(x)min>0;如果h(x)没有最小值,那么可利用导数确定出h(x)的单调性,即若h'(x)>0,则h(x)在(a,b)上是增函数,同时若h(a)≥0,则当x∈(a,b)时,有h(x)>0,即f(x)>g(x).
    例1设函数f(x)=ln x-x+1.(1)讨论f(x)的单调性;
    (3)设c>1,证明当x∈(0,1)时,1+(c-1)x>cx.
    (1)解:(导数与函数的单调性)
    令f'(x)=0解得x=1.当00,f(x)单调递增;当x>1时,f'(x)<0,f(x)单调递减.(2)证明:由(1)知f(x)在x=1处取得最大值,最大值为f(1)=0.所以当x≠1时,ln x(3)证明:由题设c>1,(构造函数)设g(x)=1+(c-1)x-cx,则g'(x)=c-1-cxln c,
    当x0,g(x)单调递增;当x>x0时,g'(x)<0,g(x)单调递减.
    又g(0)=g(1)=0,故当00.所以当x∈(0,1)时,1+(c-1)x>cx.
    对点训练1已知函数f(x)=ax+ln x,函数g(x)的导函数g'(x)=ex,且g(0)g'(1)=e,其中e为自然对数的底数.(1)若∃x∈(0,+∞),使得不等式g(x)< 成立,试求实数m的取值范围;(2)当a=0时,对于∀x∈(0,+∞),求证:f(x)(1)解:因为函数g(x)的导函数g'(x)=ex,所以g(x)=ex+c(c为常数).因为g(0)g'(1)=e,所以(1+c)e=e,可得c=0,即g(x)=ex.
    所以h(x)在(0,+∞)上为减函数,所以h(x)(2)证明:当a=0时,f(x)=ln x,令φ(x)=g(x)-f(x)-2,即φ(x)=ex-ln x-2,
    因为当x∈(0,t)时,φ'(x)<0,φ(x)在(0,t)内为减函数;当x∈[t,+∞)时,φ'(x)>0,φ(x)在[t,+∞)内为增函数,故φ(x)min=φ(t)=et-ln t-2=et-ln e-t-2=et+t-2.
    突破策略二 求最值法求最值法证明函数不等式,一般依据表达式的组成及结构有两种不同的证明方法:(1)要证f(x)≥h(x),可令φ(x)=f(x)-h(x),只需证明φ(x)min≥0.(2)要证f(x)≥h(x),可证f(x)min≥h(x)max;要证f(x)>m,可将该不等式转化为g(x)>h(x)的形式,然后再证明g(x)min>h(x)max.选用哪种方式,要看哪种方式构造出的函数的最值易求.
    (1)求函数f(x)在区间[1,e2]上的最值;
    当x∈[1,e)时,f'(x)>0;当x∈(e,e2]时,f'(x)<0.故f(x)在区间[1,e)内单调递增,在区间(e,e2]上单调递减.
    对点训练2(2018山东威海二模)已知函数f(x)= x2+ax-aex,g(x)为f(x)的导函数.(1)求函数g(x)的单调区间;(2)若函数g(x)在R上存在最大值0,求函数f(x)在[0,+∞)上的最大值;(3)求证:当x≥0时,x2+2x+3≤e2x(3-2sin x).
    (1)解:由题意可知,g(x)=f'(x)=x+a-aex,则g'(x)=1-aex,当a≤0时,g'(x)>0,∴g(x)在(-∞,+∞)上单调递增;当a>0时,若x<-ln a,则g'(x)>0,若x>-ln a,则g'(x)<0,∴g(x)在(-∞,-ln a)上单调递增,在(-ln a,+∞)上单调递减.综上,当a≤0时,g(x)的单调递增区间为(-∞,+∞),无递减区间;当a>0时,g(x)的单调递增区间为(-∞,-ln a),单调递减区间为(-ln a,+∞).
    (2)解:由(1)可知,a>0且g(x)在x=-ln a处取得最大值,
    当a∈(0,1)时,h'(a)<0,当a∈(1,+∞)时,h'(a)>0.∴h(a)在(0,1)上单调递减,在(1,+∞)单调递增,∴h(a)≥h(1)=0,∴当且仅当a=1时,a-ln a-1=0,
    由题意可知f'(x)=g(x)≤0,∴f(x)在[0,+∞)上单调递减,∴f(x)在x=0处取得最大值f(0)=-1.
    (3)证明:由(2)可知,若a=1,当x≥0时,f(x)≤-1,
    可得x2+2x≤2ex-2,x2+2x+3-e2x(3-2sin x)≤2ex-2+3-e2x(3-2sin x),令F(x)=e2x(2sin x-3)+2ex+1=ex[ex(2sin x-3)+2]+1,即证F(x)≤0,令G(x)=ex(2sin x-3)+2,
    ∴G'(x)<0,G(x)在[0,+∞)上单调递减,G(x)≤G(0)=-1,∴F(x)≤-ex+1≤0,当且仅当x=0时等号成立,∴x2+2x+3≤e2x(3-2sin x).
    突破策略三 寻求导函数零点法若使用策略一或策略二解答时,遇到令f'(x)=0,但无法解出导函数的零点x0时,可利用函数零点存在性定理,试出导函数在区间(a,b)内的零点x0,再判断导函数在区间(a,x0),(x0,b)的正负情况,从而判断f(x)在x0处取得最值,求出最值并通过对最值的处理消去x0使问题得到解决.
    例3设函数f(x)=e2x-aln x.(1)讨论f(x)的导函数f'(x)零点的个数;
    当a≤0时,f'(x)>0,f'(x)没有零点,当a>0时,因为y=e2x在区间(0,+∞)内单调递增,y=- 在区间(0,+∞)内单调递增,所以f'(x)在区间(0,+∞)内单调递增.
    (2)证明:由(1),可设f'(x)在区间(0,+∞)内的唯一零点为x0,当x∈(0,x0)时,f'(x)<0;当x∈(x0,+∞)时,f'(x)>0.故f(x)在区间(0,x0)内单调递减,在区间(x0,+∞)内单调递增,所以当x=x0时,f(x)取得最小值,最小值为f(x0).
    对点训练3设函数f(x)=ax-2-ln x(a∈R).(1)若f(x)在点(e,f(e))处的切线为x-ey+b=0,求a,b的值;(2)求f(x)的单调区间;(3)若g(x)=ax-ex,求证:当x>0时,f(x)>g(x).
    ∴当x>0时,f(x)>g(x).
    突破策略一 分离参数法已知不等式在某一区间上恒成立,求参数的取值范围,一般先分离参数,再转化为求函数在给定区间上的最值问题求解.即f(x)≥g(k)⇔[f(x)]min≥g(k),f(x)≤g(k)⇔[f(x)]max≤g(k).
    (1)求函数f(x)的单调区间;(2)若∀x∈[1,+∞),不等式f(x)>-1恒成立,求实数a的取值范围.
    ∴由条件知,2a>x2-ex对∀x∈[1,+∞)都成立.令g(x)=x2-ex,h(x)=g'(x)=2x-ex,∴h'(x)=2-ex.当x∈[1,+∞)时,h'(x)=2-ex≤2-e<0,∴h(x)=g'(x)=2x-ex在区间[1,+∞)内单调递减,∴h(x)=2x-ex≤2-e<0,即g'(x)<0,∴g(x)=x2-ex在区间[1,+∞)内单调递减,∴g(x)=x2-ex≤g(1)=1-e,故f(x)>-1在区间[1,+∞)内恒成立,只需2a>g(x)max=1-e,
    对点训练4已知函数f(x)=aln x+bx(a,b∈R)在点(1,f(1))处的切线方程为x-2y-2=0.(1)求a,b的值;
    突破策略二 分类讨论法当不等式中的参数无法分离,或含参不等式中左、右两边的函数具有某些不确定因素时,应用分类讨论的方法来处理,分类讨论可使原问题中的不确定因素变成确定因素,为问题的解决提供新的条件.因此,求参数的范围转换成了讨论参数在哪些范围能使不等式成立.
    例5已知函数f(x)=(x+1)ln x-a(x-1).(1)当a=4时,求曲线y=f(x)在(1,f(1))处的切线方程;(2)当x∈(1,+∞)时,f(x)>0,求a的取值范围.解:(1)f(x)的定义域为(0,+∞).当a=4时,f(x)=(x+1)ln x-4(x-1),f'(x)=ln x+ -3,f'(1)=-2,f(1)=0.曲线y=f(x)在(1,f(1))处的切线方程为2x+y-2=0.
    (2)当x∈(1,+∞)时,
    (ⅰ)当a≤2,x∈(1,+∞)时,x2+2(1-a)x+1≥x2-2x+1>0,故g'(x)>0,g(x)在区间(1,+∞)内单调递增,因此g(x)>0;(ⅱ)当a>2时,令g'(x)=0得
    由x2>1和x1x2=1得x1<1,故当x∈(1,x2)时,g'(x)<0,g(x)在区间(1,x2)内单调递减,因此g(x)<0.综上,a的取值范围是(-∞,2].
    对点训练5已知函数f(x)=m(x-1)ex+x2(m∈R).(1)若m=-1,求函数f(x)的单调区间;(2)若对任意的x<0,不等式x2+(m+2)x>f'(x)恒成立,求m的取值范围.
    解 (1)当m=-1时,f(x)=(1-x)ex+x2,则f'(x)=x(2-ex).由f'(x)>0得0ln 2,故函数f(x)的单调递增区间为(0,ln 2),单调递减区间为(-∞,0),(ln 2,+∞).
    因为x<0,所以mex-x-m>0.令h(x)=mex-x-m,则h'(x)=mex-1,当m≤1时,h'(x)≤ex-1<0,则h(x)在(-∞,0)内单调递减,所以h(x)>h(0)=0,符合题意;当m>1时,h(x)在(-∞,-ln m)内单调递减,在(-ln m,0)内单调递增,所以h(x)min=h(-ln m)突破策略三 分别求函数最值法若两边变量不同的函数不等式恒成立,求不等式中的参数范围,常用分别求函数最值求解.即若对∀x1∈I1,∀x2∈I2,f(x1)>g(x2)恒成立,则f(x)min>g(x)max.若对∀x1∈I1,∃x2∈I2,使得f(x1)>g(x2),则f(x)min>g(x)min.若对∀x1∈I1,∃x2∈I2,使得f(x1)当m≤0时,f'(x)<0,此时函数f(x)在(0,+∞)内单调递减.当m>0时,由f'(x)=0,解得x=2m.令f'(x)>0,解得0突破策略一 求导与数形结合法研究函数零点或方程根的情况,可以通过导数研究函数的单调性、最大值、最小值、变化趋势等,并借助函数的大致图象判断函数零点或方程根的情况.其基本的思路为:(1)构造函数,并求其定义域;(2)求导数,得单调区间和极值点;(3)通过数形结合,挖掘隐含条件,确定函数图象与x轴的交点情况进而求解.
    例7函数f(x)=(ax2+x)ex,其中e是自然对数的底数,a∈R.(1)当a>0时,解不等式f(x)≤0;(2)当a=0时,求整数t的所有值,使方程f(x)=x+2在区间[t,t+1]上有解.解:(1)因为ex>0,所以不等式f(x)≤0等价于ax2+x≤0.
    (2)当a=0时,方程f(x)=x+2即为xex=x+2.因为ex>0,所以x=0不是方程的解,
    所以方程f(x)=x+2有且只有两个实数根,且分别在区间[1,2]和[-3,-2]上,所以整数t的所有值为-3,1.
    对点训练7已知函数f(x)=x3-3x2+ax+2,曲线y=f(x)在点(0,2)处的切线与x轴交点的横坐标为-2.(1)求a;(2)证明:当k<1时,曲线y=f(x)与直线y=kx-2只有一个交点.
    (2)证明 由(1)知f(x)=x3-3x2+x+2,设g(x)=f(x)-kx+2=x3-3x2+(1-k)x+4,由题设知1-k>0.当x≤0时,g'(x)=3x2-6x+1-k>0,g(x)单调递增,g(-1)=k-1<0,g(0)=4>0,所以g(x)=0在(-∞,0]有唯一实根.当x>0时,令h(x)=x3-3x2+4,则g(x)=h(x)+(1-k)x>h(x).
    h'(x)=3x2-6x=3x(x-2),h(x)在(0,2)内单调递减,在(2,+∞)内单调递增,所以g(x)>h(x)≥h(2)=0,所以g(x)=0在(0,+∞)内没有实根.综上,g(x)=0在R有唯一实根,即曲线y=f(x)与直线y=kx-2只有一个交点.
    突破策略二 分类讨论法1.如果函数中没有参数,那么可以直接一阶求导得出函数的极值点,判断极值点大于0和小于0的情况,进而判断函数零点的个数;2.如果函数中含有参数,那么一阶导数的正负往往不好判断,这时要对参数进行分类,在参数小的范围内判断导数的符号.如果分类也不好判断,那么需要对一阶导函数进行再次求导,在判断二阶导数的正负时,也可能需要分类.3.分类讨论可使原问题中的不确定因素变成确定因素,为问题的解决提供新的条件.
    因为x→0(从右侧趋近0)时,f(x)→+∞;x→+∞时,f(x)→+∞,所以f(x)有两个零点.②当00,f(x)为增函数;当x∈(a,1)时,f'(x)<0,f(x)为减函数;当x∈(1,+∞)时,f'(x)>0,f(x)为增函数.所以f(x)在x=a处取到极大值,f(x)在x=1处取到极小值.
    当0对点训练8已知函数f(x)=x3+ax+ ,g(x)=-ln x.(1)当a为何值时,x轴为曲线y=f(x)的切线;(2)用min{m,n}表示m,n中的最小值,设函数h(x)=min{f(x),g(x)}(x>0),讨论h(x)零点的个数.
    解:(1)由题意可知f'(x)=3x2+a.设曲线y=f(x)与x轴相切于点(x0,0),则f(x0)=0,f'(x0)=0,
    (2)当x∈(1,+∞)时,g(x)=-ln x<0,从而h(x)=min{f(x),g(x)}≤g(x)<0,故h(x)在(1,+∞)内无零点.
    故x=1不是h(x)的零点.当x∈(0,1)时,g(x)=-ln x>0.所以只需考虑f(x)在(0,1)的零点个数.
    (ⅰ)若a≤-3或a≥0,则f'(x)=3x2+a在(0,1)内无零点,故f(x)在(0,1)内单调.
    1.常常将不等式的恒成立问题转化为函数的最值问题;将证明不等式问题转化为函数的单调性与最值问题;将方程的求解问题转化为函数的零点问题、两个函数图象的交点问题等.2.关于二次求导问题:(1)在讨论函数单调性时,如果导函数值的符号不容易确定,那么一般是对导函数再次求导判断出导函数的单调性,通过导函数的零点来确定导函数值的符号,从而判断出原函数的单调性;(2)利用求导的方法可求出某一函数的最值,如果求出的最值仍然是含有变量的表达式,那么再确定这一表达式的最值时仍然需要求导.
    3.“恒成立”与“存在性”问题的求解是“互补”关系,即f(x)≥g(a)对于x∈D恒成立,应求f(x)的最小值;若存在x∈D,使得f(x)≥g(a)成立,应求f(x)的最大值.4.所求问题如何转化成能利用导数解决的问题是关键.直接利用导数解决的问题一个是函数的单调性,一个是函数的极值或最值,所以应将具体问题通过等价转换(或构造函数),使所求问题转化成与单调性或函数的极值、最值有关的问题.
    相关课件

    广西专用高考数学一轮复习高考大题增分专项四高考中的立体几何课件新人教A版文: 这是一份广西专用高考数学一轮复习高考大题增分专项四高考中的立体几何课件新人教A版文,共26页。PPT课件主要包含了-2-,-3-,题型一,题型二,题型三,-4-,-5-,-6-,-7-,-8-等内容,欢迎下载使用。

    广西专用高考数学一轮复习高考大题增分专项五高考中的解析几何课件新人教A版文: 这是一份广西专用高考数学一轮复习高考大题增分专项五高考中的解析几何课件新人教A版文,共41页。PPT课件主要包含了-2-,-3-,题型一,题型二,题型三,题型四,题型五,题型六,-4-,-5-等内容,欢迎下载使用。

    高考数学一轮复习高考大题增分专项五高考中的解析几何课件文: 这是一份高考数学一轮复习高考大题增分专项五高考中的解析几何课件文,共43页。PPT课件主要包含了-2-,-3-,题型一,题型二,题型三,题型四,题型五,题型六,-4-,-5-等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map