专题3.2 牛顿运动定律的应用【讲】-2022年高考物理一轮复习讲练测
展开
这是一份专题3.2 牛顿运动定律的应用【讲】-2022年高考物理一轮复习讲练测,文件包含专题32牛顿运动定律的应用讲原卷版docx、专题32牛顿运动定律的应用讲解析版docx等2份试卷配套教学资源,其中试卷共24页, 欢迎下载使用。
\l "_Tc73520076" 二. 讲考点、讲题型 PAGEREF _Tc73520076 \h 1
\l "_Tc73520077" 考点一、超重与失重问题 PAGEREF _Tc73520077 \h 1
\l "_Tc73520078" 考点二、瞬时加速度问题 PAGEREF _Tc73520078 \h 4
\l "_Tc73520079" 考点三、连接体问题 PAGEREF _Tc73520079 \h 5
\l "_Tc73520080" 考点四、动力学图像问题 PAGEREF _Tc73520080 \h 8
\l "_Tc73520081" 考点五、动力学两类基本问题 PAGEREF _Tc73520081 \h 10
\l "_Tc73520082" 考点六、临界和极值问题 PAGEREF _Tc73520082 \h 12
一.讲考纲、讲方向
二. 讲考点、讲题型
考点一、超重与失重问题
1.实重和视重
(1)实重:物体实际所受的重力,与物体的运动状态无关。
(2)视重
①当物体挂在弹簧测力计下或放在水平台秤上时,弹簧测力计或台秤的示数称为视重。
②视重大小等于弹簧测力计所受物体的拉力或台秤所受物体的压力。
2.超重、失重和完全失重的比较
【典例1】(2020·黑龙江哈尔滨市第一中学高三开学考试)“蹦极”是一项非常刺激的体育运动.某人身系弹性绳自高空P点自由下落,图中a点是弹性绳的原长位置,c是人所到达的最低点,b是人静止地悬吊着时的平衡位置,空气阻力不计,则人从P点落下到最低点c的过程中( )
A.人从a点开始做减速运动,一直处于失重状态 B.在ab段绳的拉力小于人的重力,人处于超重状态
C.在bc段绳的拉力大于人的重力,人处于超重状态 D.在c点,人的速度为零,其加速度也为零
【答案】 C
【解析】 在Pa段绳还没有被拉长,人做自由落体运动,所以处于完全失重状态,在ab段绳的拉力小于人的重力,人受到的合力向下,有向下的加速度,处于失重状态;在bc段绳的拉力大于人的重力,人受到的合力向上,有向上的加速度,处于超重状态,故A、B错误,C正确;在c点,绳的形变量最大,绳的拉力最大,人受到的合力向上,有向上的加速度,处于超重状态,故D错误.
【典例2】(2021年山东省聊城一中高考物理模拟试卷)2020年11月10日,中国自主研发制造的万米级全海深载人潜水器“奋斗者”号在马里亚纳海沟成功坐底,创造了10909米的中国载人深潜新纪录。在这次深潜探测中,“奋斗者”号内的深度显示屏显示出的下潜过程潜水深度曲线如图所示,忽略下潜过程重力加速度的变化。下列说法正确的是( )
A. “奋斗者”号0~t1时间内受到的浮力小于,t2~t3时间内受到的浮力
B. t1~t2时间内“奋斗者”号所受重力的功率逐渐增大
C. t2~t3时间内潜水器内的科考人员处于超重状态
D. t3~t4时间内潜水器内的科考人员处于失重状态
【答案】C
【解析】A.“奋斗者”号0~t 1时间内与t 2~t 3时间内排开水的体积不变,则浮力不变,选项A错误;
B.t 1~t 2时间内“奋斗者”号的速度不变,根据P=mgv可知,所受重力的功率不变,选项B错误;
C.t 2~t 3时间内潜水器减速下降,加速度向上,则潜水器内的科考人员处于超重状态,选项C正确;
D. t 3~t 4时间内潜水器静止,则科考人员处于平衡状态,选项D错误;故选C。
【方法总结】
1.判断超重和失重的方法
(1)从受力的角度判断
当物体所受向上的拉力(或支持力)大于重力时,物体处于超重状态;小于重力时,物体处于失重状态;等于零时,物体处于完全失重状态.
(2)从加速度的角度判断
当物体具有向上的加速度时,物体处于超重状态;具有向下的加速度时,物体处于失重状态;向下的加速度等于重力加速度时,物体处于完全失重状态.
2.对超重和失重现象的理解
(1)发生超重或失重现象时,物体所受的重力没有变化,只是压力(或拉力)变大或变小了(即“视重”变大或变小了).
(2)物体处于超重或失重状态只与加速度方向有关,而与速度方向无关.
(3)物体超重或失重多少由物体的质量m和竖直加速度a共同决定,其大小等于ma.
(4)在完全失重的状态下,一切由重力产生的物理现象都会完全消失,如天平失效、浸在水中的物体不再受浮力作用、液柱不再产生压强等.
考点二、瞬时加速度问题
1.两种模型
加速度与合外力具有瞬时对应关系,二者总是同时产生、同时变化、同时消失,当物体所受合外力发生突变时,加速度也随着发生突变,而物体运动的速度不能发生突变.
2.求解瞬时加速度的一般思路
(1)分析物体原来的受力情况。
(2)分析物体在突变时的受力情况。
(3)由牛顿第二定律列方程。
(4)求出瞬时加速度,并讨论其合理性。
【典例3】(2020·福建厦门市外国语学校月考)(多选)两小球A、B先后用弹簧和轻杆相连,放在光滑斜面上静止,挡板C与斜面垂直,弹簧、轻杆均与斜面平行,如图甲、乙,A、B质量相等,重力加速度为g,斜面的倾角为θ.在突然撤去挡板的瞬间( )
A.两图中两球加速度均为gsin θ B.两图中A球的加速度均为零
C.图甲中B球的加速度为2gsin θ D.图乙中B球的加速度为gsin θ
【答案】CD
【解析】撤去挡板前,对整体分析,挡板对B球的弹力大小为2mgsin θ,因弹簧弹力不能突变,而杆的弹力会突变,所以撤去挡板瞬间,题图甲中A球所受合力为零,加速度为零,B球所受合力为2mgsin θ,加速度为2gsin θ;题图乙中杆的弹力突变为零,A、B球所受合力均为mgsin θ,加速度均为gsin θ,故C、D正确,A、B错误.
【典例4】(2021年云南省昆明一中高考物理第六次复习试卷)如图所示,轻绳一端连接一质量为m的物体,另一端固定在左侧竖直墙壁上,轻绳与竖直墙壁间夹角为45°,物体右侧与一轻弹簧相连,轻弹簧另一端固定于右侧竖直墙壁上,此时物体对光滑地面的压力恰好为零,重力加速度g=10 m/s2,则
A. 此时物体受四个力作用
B. 若突然撤去弹簧的瞬间,物体向左加速运动
C. 若突然剪断轻绳的瞬间,物体受2个力作用
D. 若突然剪断轻绳的瞬间,物体的加速度大小为10 m/s2
【答案】D
【解析】A.此时物体对地面的压力恰好为零,由受力分析可知物体受重力mg、绳子拉力F和弹簧弹力F弹3个力作用,故A错误;
B.若突然撤去弹簧的瞬间,轻绳中张力发生突变,物体受重力和地面的支持力的作用,保持静止,故B错误;
CD.剪断绳子前,Fsin45°=F弹,Fcs45°=mg,若突然剪断轻绳的瞬间,物体受重力、支持力、弹簧弹力三个力,则此时物体所受合力大小为:F合=F弹=Fsin45°=ma,联立解得a=10 m/s2,故C错误,D正确。故选D。
【方法总结】
1.在求解瞬时性问题时的两点注意
(1)物体的受力情况和运动情况时刻对应,当外界因素变化时,需要重新进行受力分析和运动分析。
(2)加速度可以随力而突变,而速度的变化需要一个过程的积累,不会发生突变。
2.解题思路
eq \x(分析瞬时变化前物体的受力情况)→eq \x(分析瞬时变化后哪些力变化或消失)→
eq \x(求出变化后物体所受合力根据牛顿第二定律列方程)→eq \x(求瞬时加速度)
考点三、连接体问题
1.连接体问题的处理方法
(1)整体法:把加速度相同的物体看作一个整体来研究的方法,整体法不考虑系统内力的影响,只考虑系统所受的外力.
(2)隔离法:把系统中某一物体(或某几个物体)隔离出来单独研究的方法,隔离法可以求系统内物体间的相互作用.
(3)整体法和隔离法并不是对立的,而是相互结合,交叉运用的.
2.加速度相同的连接体问题
(1)求内力时,通常先利用整体法求加速度,再利用隔离法求物体间的作用力.
(2)求外力时,通常先利用隔离法求加速度,再利用整体法求整体受到的外加作用力.
3.加速度不同的连接体问题
若系统内各个物体的加速度不同,一般采用隔离法.以各个物体分别作为研究对象,对它们分别进行受力分析和运动分析,并注意之间的相互作用力关系,分别列方程联立求解.
【典例5】(2021年江苏省无锡市高考物理质检试卷)如图,一足够长且倾角为30°的光滑斜面固定在地面上,一根劲度系数为k的弹簧,一端连在斜面底部的固定挡板上.质量分别为m和2m的物块A和B叠放在一起,压在弹簧上,处于静止状态.对B施加一沿斜面向上的外力,使B以0.5g(g为重力加速度)的加速度沿斜面匀加速运动,则两物块分离时的速度大小为
A. gm2kB. g3m2kC. g2m2kD. g23m2k
【答案】A
【解析】开始时AB静止平衡有:3mgsin30°=kx1,当两物块分离时,AB间的弹力为零,对A根据牛顿第二定律有:kx2−mgsin30°=ma,从开始到AB分离过程有:v2=2ax1−x2,
联立以上各式代入数据解得:v=gm2k,故A正确,BCD错误。
故选A。
【典例6】(2021年湖南省新高考“八省联考”高考物理适应性试卷)(多选)如图,三个质量均为1kg的物体A、B、C叠放在水平桌面上,B、C用不可伸长的轻绳跨过一光滑轻质定滑轮连接,A与B之间、B与C之间的接触面以及轻绳均与桌面平行,A与B之间、B与C之间以及C与桌面之间的动摩擦因数分别为0.4、0.2和0.1,重力加速度g取10m/s2,设最大静摩擦力等于滑动摩擦力。用力F沿水平方向拉物体C,以下说法正确的是( )
A. 拉力F小于11N时,不能拉动C B. 拉力F为17N时,轻绳的拉力为4N
C. 要使A、B保持相对静止,拉力F不能超过23N D. A的加速度将随拉力F的增大而增大
【答案】AC
【解析】A.当C物体即将运动时,C物体水平方向桌面给C的向右的摩擦力f桌,绳子向右的拉力T,B给C向右的摩擦力fBC,其中,
当即将滑动时应有, ,可解得,故A正确;
C.因为B和C的加速度大小相等,在A和B即将发生相对滑动,对A受力分析可得fAB=0.4mAg=mAa
对AB整体受力分析可得T−fBC=(mA+mB)a
对C物体受力分析可得F−T−fBC−f地=mCa 联立解得
说明A和B发生相对滑动的临界力大小为,故C正确;
B.当时,没有发生相对滑动,此时对AB整体T−fBC=(mA+mB)a1
对C物体受力分析F−T−fBC−f地=mCa1 联立解得:,故B错误;
D.当拉力增大,A和B发生相对滑动时,则A物体受到滑动摩擦力,加速度为
加速度不变,故D错误。故选AC。
【方法总结】
(1)连接体问题的分析方法
一是隔离法,二是整体法。
(2)加速度相同的连接体
①若求解整体的加速度,可用整体法。整个系统看成一个研究对象,分析整体受外力情况,再由牛顿第二定律求出加速度。
②若求解系统内力,可先用整体法求出整体的加速度,再用隔离法将内力转化成外力,由牛顿第二定律求解。
(3)加速度不同的连接体:若系统内各个物体的加速度不同,一般应采用隔离法。以各个物体分别作为研究对象,对每个研究对象进行受力和运动情况分析。分别应用牛顿第二定律建立方程,并注意应用各个物体的相互作用关系联系求解。
考点四、动力学图像问题
1.常见的动力学图象
vt图象、at图象、Ft图象、Fa图象等.
2.图象问题的类型
(1)已知物体受的力随时间变化的图线,要求分析物体的运动情况.
(2)已知物体的速度、加速度随时间变化的图线,要求分析物体的受力情况.
(3)由已知条件确定某物理量的变化图象.
【典例7】(2021.云南德宏模拟)(多选)粗糙的水平面上一物体在水平方向拉力作用下做直线运动,水平拉力F及运动速度v随时间变化的图线如图中甲、乙所示,取重力加速度g=10 m/s2,则( )
A.前2 s内物体运动的加速度为2 m/s2 B.前4 s内物体运动的位移大小为8 m
C.物体的质量m为2 kg D.物体与地面间的动摩擦因数μ=0.1
【答案】AD
【解析】根据速度图象的斜率等于加速度,可知前2 s内物体的运动加速度a=eq \f(Δv,Δt)=eq \f(4,2) m/s2=2 m/s2,故A正确;前4 s内物体的位移为x=eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)×2×4+2×4))m=12 m,故B错误;根据牛顿第二定律得,前2 s内F1-μmg=ma,2 s后物体做匀速运动,则F2=μmg,由图得F1=15 N,F2=5 N,代入解得m=5 kg,μ=0.1,故C错误,D正确.
【典例8】(2020·绵阳一诊)如图所示,一轻弹簧竖直固定在水平地面上,弹簧正上方有一个小球自由下落。从小球接触弹簧上端O点到将弹簧压缩到最短的过程中,下列关于小球的加速度a随时间t或者随距O点的距离x变化的关系图线正确的是
【答案】B
【解析】小球自接触弹簧上端O点到将弹簧压缩到最短的过程中,其弹力F=kx,由牛顿第二定律可得:mg-kx=ma,解得a=g-eq \f(k,m)x,故选项B正确、D错误;加速度随时间的变化是先减小再反向增大,但不是线性关系变化,故选项A、C错。
【典例9】(2021届山东济南章丘四中高三模拟)如图所示,物块A叠放在木板B上,且均处于静止状态,已知水平地面光滑,A、B间的动摩擦因数μ=0.2,现对A施加一水平向右的拉力F,测得B的加速度a与拉力F的关系如图乙所示,下列说法正确的是(设最大静摩擦力等于滑动摩擦力,取g=10m/s2)
A.当F<24N时,A、B都相对地面静止 B.当F>24N时,A相对B发生滑动
C.A的质量为4kg D.B的质量为24kg
【答案】BC
【解析】当A与B间的摩擦力达到最大静摩擦力后,A、B会发生相对滑动,由图可知,B的最大加速度为4m/s2,即拉力F>24N时,A相对B发生滑动,当F<24N时,A、B保持相对静止,一起做匀加速直线运动,故A错误,B正确.对B,根据牛顿第二定律得,aB==4m/s2,对A,根据牛顿第二定律得,aA==4m/s2,F=24N,解得mA=4kg,mB=2kg,故C正确,D错误.故选BC.
【方法总结】图像问题分析方法
1.分清图象的类别:即分清横、纵坐标所代表的物理量,明确其物理意义,掌握物理图象所反映的物理过程,会分析临界点.
2.注意图线中的一些特殊点所表示的物理意义:图线与横、纵坐标的交点,图线的转折点,两图线的交点等.
3.明确能从图象中获得哪些信息:把图象与具体的题意、情景结合起来,应用物理规律列出与图象对应的函数方程式,进而明确“图象与公式”“图象与物体”间的关系,以便对有关物理问题作出准确判断.
考点五、动力学两类基本问题
1、解决两类动力学基本问题应把握的关键
(1)两个分析——物体的受力分析和运动过程分析;
(2)一个“桥梁”——物体运动的加速度是联系运动和力的桥梁。
【典例10】已知受力情况,确定物体的运动
(2020·湖南长沙中学月考)某航母上舰载机起飞时主要靠甲板前端上翘来帮助战斗机起飞,其示意图如图所示,飞机由静止开始先在一段水平距离为L1=160 m的水平跑道上运动,然后在长度为L2=20.5 m的倾斜跑道上滑跑,直到起飞.已知飞机的质量m=2.0×104 kg,其喷气发动机的推力大小恒为F=1.4×105 N,方向与速度方向相同,水平跑道与倾斜跑道末端的高度差h=2.05 m,飞机在水平跑道上和倾斜跑道上运动的过程中受到的平均阻力大小都为飞机重力的0.2倍,假设航母处于静止状态,飞机质量视为不变并可看成质点,倾斜跑道看作斜面,不计水平跑道和倾斜跑道连接处的影响,且飞机起飞的过程中没有出现任何故障,取g=10 m/s2.求:
(1)飞机在水平跑道上运动的末速度大小;
(2)飞机从开始运动到起飞经历的时间t.
【答案】(1)40 m/s (2)8.5 s
【解析】(1)设飞机在水平跑道上运动的加速度大小为a1,阻力大小为F阻,在水平跑道上运动的末速度大小为v1,由牛顿第二定律得F-F阻=ma1,
F阻=0.2mg,
v12=2a1L1,
联立以上三式并代入数据解得a1=5 m/s2,v1=40 m/s.
(2)设飞机在倾斜跑道上运动的加速度大小为a2,在倾斜跑道末端的速度大小为v2,
飞机在水平跑道上的运动时间t1=eq \f(v1,a1)=8 s,
在倾斜跑道上,由牛顿第二定律有
F-F阻-mgeq \f(h,L2)=ma2,
代入数据解得a2=4 m/s2,
由v22-v12=2a2L2,
代入数据解得v2=42 m/s,
飞机在倾斜跑道上的运动时间t2=eq \f(v2-v1,a2)=0.5 s,
则t=t1+t2=8.5 s.
【典例11】已知运动情况,确定物体的受力
(2021·德州模拟)一质量为m=2 kg的滑块能在倾角为θ=30°的足够长的斜面上以a=2.5 m/s2匀加速下滑。如图所示,若用一水平向右恒力F作用于滑块,使之由静止开始在t=2 s内能沿斜面运动位移x=4 m。求:(g取10 m/s2)
(1)滑块和斜面之间的动摩擦因数μ;
(2)恒力F的大小。
【答案】(1)eq \f(\r(3),6) (2)eq \f(76\r(3),5)N或eq \f(4\r(3),7) N
【解析】(1)根据牛顿第二定律可得:
mgsin 30°-μmgcs 30°=ma
解得:μ=eq \f(\r(3),6)。
(2)由x=eq \f(1,2)at2求a=2 m/s2
使滑块沿斜面做匀加速直线运动,有加速度向上和向下两种可能。当加速度沿斜面向上时,Fcs 30°-mgsin 30°-μ(Fsin 30°+mgcs 30°)=ma,
代入数据得:F=eq \f(76\r(3),5) N
当加速度沿斜面向下时:
mgsin 30°-Fcs 30°-μ(Fsin 30°+mgcs 30°)=ma
代入数据得:F=eq \f(4\r(3),7) N。
【方法总结】
两类动力学问题的解题步骤
考点六、临界和极值问题
1.常见的临界条件
(1)两物体脱离的临界条件:FN=0.
(2)相对滑动的临界条件:静摩擦力达到最大值.
(3)绳子断裂或松弛的临界条件:绳子断裂的临界条件是绳中张力等于它所能承受的最大张力;绳子松弛的临界条件是FT=0.
(4)最终速度(收尾速度)的临界条件:物体所受合外力(加速度)为零.
2.解题基本思路
(1)认真审题,详细分析问题中变化的过程(包括分析整个过程中有几个阶段);
(2)寻找过程中变化的物理量;
(3)探索物理量的变化规律;
(4)确定临界状态,分析临界条件,找出临界关系.
3.解题方法
【典例12】临界问题
(2021·沈阳一模)如图所示,质量均为m的A、B两物体叠放在竖直弹簧上并保持静止,用大小等于mg的恒力F向上拉B,运动距离h时,B与A分离。下列说法正确的是
A.B和A刚分离时,弹簧长度等于原长 B.B和A刚分离时,它们的加速度为g
C.弹簧的劲度系数等于eq \f(mg,h) D.在B与A分离之前,它们做匀加速直线运动
【答案】C
【解析】A、B分离前,A、B共同做加速运动,由于F是恒力,而弹力是变力,故A、B做变加速直线运动,当两物体要分离时,FAB=0,
对B:F-mg=ma,
对A:kx-mg=ma。
即F=kx时,A、B分离,此时弹簧仍处于压缩状态,
由F=mg,设用恒力F拉B前弹簧压缩量为x0,则
2mg=kx0,h=x0-x,
解以上各式得k=eq \f(mg,h),综上所述,只有C项正确。
【典例13】极值问题
(2021·武昌一模)如图所示,一质量m=0.4 kg的小物块,以v0=2 m/s的初速度,在与斜面成某一夹角的拉力F作用下,沿斜面向上做匀加速运动,经t=2 s的时间物块由A点运动到B点,A、B之间的距离L=10 m。已知斜面倾角θ=30°,物块与斜面之间的动摩擦因数μ=eq \f(\r(3),3)。重力加速度g取10 m/s2。
(1)求物块加速度的大小及到达B点时速度的大小;
(2)拉力F与斜面夹角多大时,拉力F最小?拉力F的最小值是多少?
【答案】(1)3 m/s2 8 m/s (2)30° eq \f(13\r(3),5) N
【解析】(1)设物块加速度的大小为a,到达B点时速度的大小为v,由运动学公式得
L=v0t+eq \f(1,2)at2①
v=v0+at②
联立①②式,代入数据得
a=3 m/s2③
v=8 m/s④
(2)设物块所受支持力为FN,所受摩擦力为Ff,拉力与斜面间的夹角为α,受力分析如图所示,由牛顿第二定律得
Fcs α-mgsin θ-Ff=ma⑤
Fsin α+FN-mgcs θ=0⑥
又Ff=μFN⑦
联立⑤⑥⑦式得
F=eq \f(mg(sin θ+μcs θ)+ma,cs α+μsin α)⑧
由数学知识得
cs α+eq \f(\r(3),3)sin α=eq \f(2\r(3),3)sin (60°+α)⑨
由⑧⑨式可知对应F最小时与斜面间的夹角
α=30°⑩
联立③⑧⑩式,代入数据得F的最小值为
Fmin=eq \f(13\r(3),5) N。
【方法总结】解决临界问题的基本思路
1.认真审题,详尽分析问题中变化的过程(包括分析整体过程中有几个阶段);
2.寻找过程中变化的物理量;
3.探索物理量的变化规律;
4.确定临界状态,分析临界条件,找出临界关系。
考点内容
考题统计
考查方向
备考方案
牛顿运动定律的理解与应用
2020全国卷Ⅰ,T20,6分
2018全国卷Ⅰ,T15,6分
2019全国卷Ⅰ,T21,6分
考查动力学图像、超重与失重、连接体问题问题,受力分析及牛顿运动定律等相关知识点,动力学两类基本问题
物理观念
能从运动与相互作用的视角分析自然与生活中的有关简单问题
科学思维
1.运用牛顿运动定律分析、解决问题
2.掌握“整体法”“隔离法”“图象法” “临界法”等的应用
科学探究
通过实验,认识超重和失重
受力分析,连接体问题及超重与失重有关知识
超重现象
失重现象
完全失重现象
概念
物体对支持物的压力(或对悬挂物的拉力)大于物体所受重力的现象
物体对支持物的压力(或对悬挂物的拉力)小于物体所受重力的现象
物体对支持物的压力(或对悬挂物的拉力)等于零的现象
产生条件
物体的加速度方向竖直向上
物体的加速度方向竖直向下
物体的加速度方向竖直向下,大a=g
原理方程
F-mg=ma
F=m(g+a)
mg-F=ma
F=m(g-a)
mg-F=ma=mg
F=0
运动状态
加速上升或减速下降
加速下降或减速上升
以a=g加速下降或减速上升
极限法
把物理问题(或过程)推向极端,从而使临界现象(或状态)暴露出来,以达到正确解决问题的目的
假设法
临界问题存在多种可能,特别是非此即彼两种可能时,或变化过程中可能出现临界条件,也可能不出现临界条件时,往往用假设法解决问题
数学法
将物理过程转化为数学表达式,根据数学表达式解出临界条件
相关试卷
这是一份3.2 牛顿运动定律的综合应用(练)--高考物理一轮复习讲练测(全国通用),文件包含32牛顿运动定律的综合应用练--高考物理一轮复习讲练测全国通用解析版docx、32牛顿运动定律的综合应用练--高考物理一轮复习讲练测全国通用原卷版docx等2份试卷配套教学资源,其中试卷共39页, 欢迎下载使用。
这是一份3.2 牛顿运动定律的综合应用(讲)--高考物理一轮复习讲练测(全国通用),文件包含32牛顿运动定律的综合应用讲--高考物理一轮复习讲练测全国通用解析版docx、32牛顿运动定律的综合应用讲--高考物理一轮复习讲练测全国通用原卷版docx等2份试卷配套教学资源,其中试卷共29页, 欢迎下载使用。
这是一份专题3.2 带电粒子在电场运动(讲)-2023年高考物理二轮复习讲练测(新高考专用)(解析版),共16页。试卷主要包含了电场和磁场等内容,欢迎下载使用。