![高中数学人教B版必修33.3随机数的含义与应用_3.4概率的应用课件(41张)01](http://img-preview.51jiaoxi.com/3/3/12187739/0/0.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![高中数学人教B版必修33.3随机数的含义与应用_3.4概率的应用课件(41张)02](http://img-preview.51jiaoxi.com/3/3/12187739/0/1.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![高中数学人教B版必修33.3随机数的含义与应用_3.4概率的应用课件(41张)03](http://img-preview.51jiaoxi.com/3/3/12187739/0/2.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![高中数学人教B版必修33.3随机数的含义与应用_3.4概率的应用课件(41张)04](http://img-preview.51jiaoxi.com/3/3/12187739/0/3.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![高中数学人教B版必修33.3随机数的含义与应用_3.4概率的应用课件(41张)05](http://img-preview.51jiaoxi.com/3/3/12187739/0/4.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![高中数学人教B版必修33.3随机数的含义与应用_3.4概率的应用课件(41张)06](http://img-preview.51jiaoxi.com/3/3/12187739/0/5.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![高中数学人教B版必修33.3随机数的含义与应用_3.4概率的应用课件(41张)07](http://img-preview.51jiaoxi.com/3/3/12187739/0/6.jpg?x-oss-process=image/resize,w_794/sharpen,100)
![高中数学人教B版必修33.3随机数的含义与应用_3.4概率的应用课件(41张)08](http://img-preview.51jiaoxi.com/3/3/12187739/0/7.jpg?x-oss-process=image/resize,w_794/sharpen,100)
高中数学人教版新课标B必修33.4 概率的应用教案配套ppt课件
展开学习目标1.通过具体问题感受几何概型的概念,体会几何概型的意义.2.会求一些简单的几何概型的概率.3.了解随机数的意义,能用计算机随机模拟法估计事件的概率.4.应用概率解决实际问题.
知识点一 几何概型的概念
思考 往一个方格中投一粒芝麻,芝麻可能落在方格中的任何一点上.这个试验可能出现的结果是有限个,还是无限个?若没有人为因素,每个试验结果出现的可能性是否相等?
答案 出现的结果是无限个;每个结果出现的可能性是相等的.
梳理1.几何概型的定义事件A理解为区域Ω的某一子区域A,如图,A的概率只与子区域A的 (长度、面积或体积)成 ,而与A的 和 无关.满足以上条件的试验称为 .2.几何概型的特点(1)试验中所有可能出现的结果(基本事件)有 .(2)每个基本事件出现的可能性 .
思考 既然几何概型的基本事件有无限多个,难以像古典概型那样计算概率,那么如何度量事件A所包含的基本事件数与总的基本事件数之比?
知识点二 几何概型的概率公式
答案 可以用事件A所占有的几何量与总的基本事件所占有的几何量之比来表示.
梳理几何概型的概率计算公式在几何概型中,事件A的概率定义为: ,其中,μΩ表示________________,μA表示__________________.
1.随机数随机数就是在 ,并且得到这个范围内的______ .2.计算机随机模拟法或蒙特卡罗方法建立一个概率模型,它与某些我们 有关,然后设计适当的试验,并通过这个试验的结果来 .按照以上思路建立起来的方法称为计算机随机模拟法或蒙特卡罗方法.
一定范围内随机产生的数
[思考辨析 判断正误]1.与面积有关的几何概型的概率与几何图形的形状有关.( )2.随机模拟方法是以事件发生的频率估计概率.( )
例1 下列关于几何概型的说法错误的是 A.几何概型是古典概型的一种,基本事件都要具有等可能性B.几何概型中事件发生的概率与它的形状或位置无关C.几何概型在一次试验中可能出现的结果有无限多个D.几何概型中每个结果的发生都具有等可能性
题型一 几何概型的识别
解析 几何概型和古典概型是两种不同的概率模型,几何概型中的基本事件有无限多个,古典概型中的基本事件为有限个.
反思与感悟 几何概型特点的理解(1)无限性:在每次随机试验中,不同的试验结果有无穷多个,即基本事件有无限多个;(2)等可能性:在每次随机试验中,每个试验结果出现的可能性相等,即基本事件的发生是等可能的.
跟踪训练1 判断下列概率模型是古典概型还是几何概型.(1)先后抛掷两枚质地均匀的骰子,求出现两个“4点”的概率;(2)如图所示,图中有一个转盘,甲、乙玩转盘游戏,规定当指针指向B区域时,甲获胜,否则乙获胜,求甲获胜的概率.
解 先后抛掷两枚质地均匀的骰子,所有可能结果有6×6=36(种),且它们的发生都是等可能的,因此属于古典概型.解 游戏中指针指向B区域时有无限多个结果,且它们的发生都是等可能的,而且不难发现“指针落在阴影部分”的概率可以用阴影部分的面积与总面积的比来衡量,即与区域面积有关,因此属于几何概型.
题型二 几何概型的计算
命题角度1 与长度有关的几何概型例2 某公共汽车站,每隔15分钟有一辆车发出,并且发出前在车站停靠3分钟,求乘客到站候车时间大于10分钟的概率.
解 如图所示,设相邻两班车的发车时刻为T1,T2,T1T2=15.
设T0T2=3,TT0=10,记“乘客到站候车时间大于10分钟”为事件A.则当乘客到站时刻t落到T1T上时,事件A发生.因为T1T=15-3-10=2,T1T2=15,
引申探究 1.本例中在题设条件不变的情况下,求候车时间不超过10分钟的概率.
解 由原题解析图可知,当t落在TT2上时,候车时间不超过10分钟,
2.本例中在题设条件不变的情况下,求乘客到达车站立即上车的概率.
解 由原题解析图可知,当t落在T0T2上时,乘客立即上车,
反思与感悟 若一次试验中所有可能的结果和某个事件A包含的结果(基本事件)都对应一个长度,如线段长、时间区间长、距离、路程等,那么需要先求出各自相应的长度,然后运用几何概型的概率计算公式求出事件A发生的概率.
跟踪训练2 平面上画了一些彼此相距2a的平行线,把一枚半径为r(r<a)的硬币任意掷在这个平面上,求硬币不与任何一条平行线相碰的概率.
解 记“硬币不与任何一条平行线相碰”为事件A,如图,由图可知,硬币圆心在线段AB上的任意一点的出现是等可能的.圆心在线段CD(不含点C,D)上出现时硬币不与平行线相碰,
命题角度2 与面积有关的几何概型例3 设点M(x,y)在区域{(x,y)||x|≤1,|y|≤1}上均匀分布出现,求:(1)x+y≥0的概率;
解 如图,满足|x|≤1,|y|≤1的点(x,y)组成一个边长为2的正方形(ABCD)区域(含边界),S正方形ABCD=4.x+y=0的图象是直线AC,满足x+y≥0的点在AC的右上方(含AC),
(2)x+y<1的概率;
解 设E(0,1),F(1,0),则x+y=1的图象是EF所在的直线,满足x+y<1的点在直线EF的左下方,即在五边形ABCFE内(不含边界EF),
(3)x2+y2≥1的概率.
解 满足x2+y2=1的点是以原点为圆心的单位圆O,S⊙O=π,
反思与感悟 如果每个基本事件可以理解为从某个特定的几何区域内随机地取一点,某个随机事件的发生理解为恰好取到上述区域的某个指定区域内的点,且该区域中的每一个点被取到的机会都一样,这样的概率模型就可以视为几何概型,并且这里的区域可以用面积表示,利用几何概型的概率公式求解.
跟踪训练3 欧阳修《卖油翁》中写到,(翁)乃取一葫芦置于地,以钱覆其口,徐以杓酌沥之,自钱孔入而钱不湿.若铜钱是直径为3 cm的圆,中间有一个边长为1 cm的正方形孔,若随机向铜钱上滴一滴油(油滴的大小忽略不计),则油滴正好落入孔中的概率是
命题角度3 与体积有关的几何概型例4 已知正三棱锥S-ABC的底面边长为a,高为h,在正三棱锥内取点M,试求点M到底面的距离小于 的概率.
解 如图,分别在SA,SB,SC上取点A1,B1,C1,使A1,B1,C1分别为SA,SB,SC的中点,
跟踪训练4 在一个球内有一棱长为1的内接正方体,一动点在球内运动,则此点落在正方体内部的概率为
解析 由题意可知这是一个几何概型,棱长为1的正方体的体积V1=1,球的直径是正方体的体对角线长,
题型三 均匀随机数及随机模拟方法
例5 在如图所示的正方形中随机撒一把豆子,计算落在圆中的豆子数与落在正方形中的豆子数之比并以此估计圆周率的值.
解 随机撒一把豆子,每个豆子落在正方形内任何一点是等可能的,落在每个区域的豆子数与这个区域的面积近似成正比,
由于落在每个区域的豆子数是可以数出来的,
所以就得到了π的近似值.
反思与感悟 (1)用随机数模拟的关键是把实际问题中事件A及基本事件总体对应的区域转化为随机数的范围.用转盘产生随机数,这种方法可以亲自动手操作,但费时费力,试验次数不可能很大.(2)用计算机产生随机数,可以产生大量的随机数,又可以自动统计试验的结果,同时可以在短时间内进行多次重复试验,可以对试验结果的随机性和规律性有更深刻的认识.
跟踪训练5 利用随机模拟方法计算由y=1和y=x2所围成的图形的面积.
解 以直线x=1,x=-1,y=0,y=1为边界作矩形,(1)利用计算器或计算机产生两组0~1区间的均匀随机数,a1=RAND,b=RAND;(2)进行平移和伸缩变换,a=2(a1-0.5);(3)数出落在阴影内的样本点数N1,用几何概型公式计算阴影部分的面积.
例如做1 000次试验,即N=1 000,模拟得到N1=698,
1.下列概率模型是几何概型的为 A.已知a,b∈{1,2,3,4},求使方程x2+2ax+b=0有实根的概率B.已知a,b满足|a|≤2,|b|≤3,求使方程x2+2ax+b=0有实根的概率C.从甲、乙、丙三人中选2人参加比赛,求甲被选中的概率D.求张三和李四的生日在同一天的概率(一年按365天计算)
解析 对于选项B,a,b满足的条件为坐标平面内某一区域,涉及面积问题,为几何概型,其他三个选项均为古典概型.
2.面积为S的△ABC,D是BC的中点,向△ABC内部投一点,那么点落在△ABD内的概率为
解析 向△ABC内部投一点的结果有无限个,属于几何概型.设点落在△ABD内为事件M,
3.如图,边长为2的正方形中有一封闭曲线围成的阴影区域.在正方形中随机撒一粒豆子,它落在阴影区域内的概率是 ,则阴影区域的面积是
解析 在正方形中随机撒一粒豆子,其结果有无限个,属于几何概型.设“落在阴影区域内”为事件A,则事件A构成的区域是阴影部分.设阴影区域的面积为S,全部结果构成的区域面积是正方形的面积,
4.在200 mL的水中有一个草履虫,现从中随机取出20 mL水样利用显微镜观察,则发现草履虫的概率是_____.
解析 记“从200 mL水中随机取出20 mL水样利用显微镜观察,发现草履虫”为事件A,
5.在区间[0,1]上任取三个数a,b,c,若向量m=(a,b,c),求|m|≥1的概率.
解 ∵a,b,c∈[0,1],∴Ω={(a,b,c)|0≤a≤1,0≤b≤1,0≤c≤1}构成的区域为单位正方体(其中原点O为正方体的一个顶点).设“|m|≥1”为事件A,
数学第三章 概率3.4 概率的应用说课ppt课件: 这是一份数学第三章 概率3.4 概率的应用说课ppt课件,共42页。PPT课件主要包含了4概率的应用,自主学习梳理知识,课前基础梳理,典例精析规律总结,课堂互动探究,即学即练稳操胜券,基础知识达标等内容,欢迎下载使用。
高中数学人教版新课标B必修33.4 概率的应用课文ppt课件: 这是一份高中数学人教版新课标B必修33.4 概率的应用课文ppt课件,共41页。PPT课件主要包含了概率接近1,概率接近0,概率在密码中的应用,总体估计中概率的应用等内容,欢迎下载使用。
高中数学人教版新课标B必修33.3.2随机数的含义与应用授课ppt课件: 这是一份高中数学人教版新课标B必修33.3.2随机数的含义与应用授课ppt课件,共19页。PPT课件主要包含了自学导引,大小形状,充分搅拌,确定算法,周期性,随机数,真正的随机数,名师点睛,变式1,变式2等内容,欢迎下载使用。