年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2022年中考数学专题复习类型六 二次函数与等腰三角形有关的问题(原卷版)

    2022年中考数学专题复习类型六 二次函数与等腰三角形有关的问题(原卷版)第1页
    2022年中考数学专题复习类型六 二次函数与等腰三角形有关的问题(原卷版)第2页
    2022年中考数学专题复习类型六 二次函数与等腰三角形有关的问题(原卷版)第3页
    还剩5页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年中考数学专题复习类型六 二次函数与等腰三角形有关的问题(原卷版)

    展开

    这是一份2022年中考数学专题复习类型六 二次函数与等腰三角形有关的问题(原卷版),共8页。
    (1)求抛物线的解析式;
    (2)点M为线段BC上方抛物线上的一点,点N为线段BC上的一点,若MN∥y轴,求MN的最大值;
    (3)在抛物线的对称轴上是否存在点Q,使△ACQ为等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.
    【典例2】如图,在平面直角坐标系中,抛物线y=x2+bx+c经过点A(0,-6)和点C(6,0).
    (1)求抛物线的解析式;
    (2)若抛物线与x轴的负半轴交于点B,试判断△ABC的形状;(钝角三角形、直角三角形、锐角三角形)
    (3)在抛物线上是否存在点P,使得△PAC是以AC为底的等腰三角形?若存在,请求出所有点P的坐标;若不存在,请说明理由.
    【典例3】如图,在平面直角坐标系中,直线y=-2x+10与x轴,y轴相交于A,B两点,点C的坐标是(8,4),连接AC,BC.
    (1)求过O,A,C三点的抛物线的解析式,并判断△ABC的形状;
    (2)动点P从点O出发,沿OB以每秒2个单位长度的速度向点B运动,同时,动点Q从点B出发,沿BC以每秒1个单位长度的速度向点C运动,规定其中一个动点到达端点时,另一个动点也随之停止运动.设运动时间为t秒.当t为何值时,PA=QA?
    (3)在抛物线的对称轴上,是否存在点M,使以A,B,M为顶点的三角形是等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由.
    【典例4】如图,抛物线与轴交于,两点(在的右侧),且经过点和点.
    (1)求抛物线的函数表达式;
    (2)连接,经过点的直线与线段交于点,与抛物线交于另一点.连接,,,的面积与的面积之比为1:7.点为直线上方抛物线上的一个动点,设点的横坐标为.当为何值时,的面积最大?并求出最大值;
    (3)在抛物线上,当时,的取值范围是,求的取值范围.(直接写出结果即可)
    【典例5】如图,抛物线与轴交于,两点(点在点的左侧),与轴交于点.直线与抛物线交于,两点,与轴交于点,点的坐标为.
    (1)请直接写出,两点的坐标及直线的函数表达式;
    (2)若点是抛物线上的点,点的横坐标为,过点作轴,垂足为.与直线交于点,当点是线段的三等分点时,求点的坐标;
    (3)若点是轴上的点,且,求点的坐标.
    【典例6】如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=-1,且经过A(1,0),C(0,3)两点,与x轴的另一个交点为B.
    (1)若直线y=mx+n经过B,C两点,求抛物线和直线BC的解析式;
    (2)在抛物线的对称轴x=-1上找一点M,使点M到点A的距离与到点C的距离之和最小,求点M的坐标;
    (3)设点P为抛物线的对称轴x=-1上的一个动点,求使△BPC为直角三角形的点P的坐标.
    【典例7】如图,抛物线y=-eq \f(4,5)x2+eq \f(24,5)x-4与x轴交于点A、B,与y轴交于点C,抛物线的对称轴与x轴交于点M.P是抛物线在x轴上方的一个动点(点P、M、C不在同一条直线上).
    (1)求点A,B的坐标;
    (2)连接AC、PB、BC,当S△PBC=S△ABC时,求出此时点P的坐标;
    (3)分别过点A、B作直线CP的垂线,垂足分别为点D、E,连接MD、ME.问△MDE能否为等腰直角三角形?若能,求此时点P的坐标;若不能,说明理由.

    【典例8】如图①,抛物线y=ax2+bx+4交x轴于A、B两点(点A在点B左侧),交y轴于点C,连接AC、BC,其中CO=BO=2AO.
    (1)求抛物线的解析式;
    (2)点Q为直线BC上方的抛物线上一点,过点Q作QE∥AC交BC于点E,作QN⊥x轴于点N,交BC于点M,当△EMQ的周长L最大时,求点Q的坐标及L的最大值;
    (3)如图②,在(2)的结论下,连接AQ分别交BC于点F,交OC于点G,四边形BOGF从F开始沿射线FC平移,同时点P从C开始沿折线CO-OB运动,且点P的运动速度为四边形BOGF平移速度的eq \r(2)倍,当点P到达B点时,四边形BOGF停止运动,设四边形BOGF平移过程中对应的图形为B1O1G1F1,当△PFF1为等腰三角形时,求B1F的长度.

    相关试卷

    2022年中考数学专题复习类型三 二次函数与面积有关的问题(原卷版):

    这是一份2022年中考数学专题复习类型三 二次函数与面积有关的问题(原卷版),共6页。

    2022年中考数学专题复习类型十一 二次函数与正方形有关的问题(原卷版):

    这是一份2022年中考数学专题复习类型十一 二次函数与正方形有关的问题(原卷版),共7页。

    2022年中考数学专题复习类型十 二次函数与矩形有关的问题(原卷版):

    这是一份2022年中考数学专题复习类型十 二次函数与矩形有关的问题(原卷版),共6页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map