2021年全国中考数学真题分类汇编--函数:反比例函数(解析卷)
展开2021全国中考真题分类汇编(函数)
----反比例函数
一、选择题
1. (2021•怀化市)如图,菱形ABCD的四个顶点均在坐标轴上,对角线AC、BD交于原点O,AE⊥BC于E点,交BD于M点,反比例函数y=(x>0)的图象经过线段DC的中点N,若BD=4,则ME的长为( )
A.ME= B.ME= C.ME=1 D.ME=
【分析】过N作y轴和x轴的垂线NG,NH,证明四边形NGOH是矩形,设N(b,a),根据反比例函数图象上点的坐标特点可得ab=,进而可计算出CO长,根据三角函数可得∠CDO=30°,再根据菱形的性质可得∠ABC=∠ADC=2∠CDO=60°,∠ACD=60°,进而即可证得△ABC是等边三角形,得出AE=OB=2,由∠BAE=30°=∠ABO,得出AM=BM,则EM=OM,从而得到3EM=OB=2,进而可得EM长.
【解答】解:过N作y轴和x轴的垂线NG,NH,
设N(b,a),
∵反比例函数y=(x>0)的图象经过点N,
∴ab=,
∵四边形ABCD是菱形,
∴BD⊥AC,DO=BD=2,
∵NH⊥x轴,NG⊥y轴,
∴四边形NGOH是矩形,
∴NG∥x轴,NH∥y轴,
∵N为CD的中点,
∴DO•CO=2a•2b=4ab=,
∴CO=,
∴tan∠CDO==.
∴∠CDO=30°,
∴∠DCO=60°,
∵四边形ABCD是菱形,
∴∠ADC=∠ABC=2∠CDO=60°,∠ACB=∠DCO=60°,
∴△ABC是等边三角形,
∵AE⊥BC,BO⊥AC,
∴AE=BO=2,∠BAE=30°=∠ABO,
∴AM=BM,
∴OM=EM,
∵∠MBE=30°,
∴BM=2EM=2OM,
∴3EM=OB=2,
∴ME=,
故选:D.
2. (2021•宿迁市)已知双曲线过点(3,)、(1,)、(-2,),则下列结论正确的是( )
A. B. C. D.
【答案】A
【解析】
【分析】利用分比例函数的增减性解答即可.
【详解】解:∵
∴当x>0时,y随x的增大,且y<0;当x<0时,y随x的增大,且y>0;
∵0<1<3,-2<0
∴y2<y1<0,y3>0
∴.
故选A.
江苏省扬州)如图,点P是函数的图像上一点,过点P分别作x轴和y轴的垂线,垂足分别为点A、B,交函数的图像于点C、D,连接、、、,其中,下列结论:①;②;③,其中正确的是( )
A. ①② B. ①③ C. ②③ D. ①
【答案】B
【解析】
【分析】设P(m,),分别求出A,B,C,D的坐标,得到PD,PC,PB,PA的长,判断和的关系,可判断①;利用三角形面积公式计算,可得△PDC的面积,可判断③;再利用计算△OCD的面积,可判断②.
【详解】解:∵PB⊥y轴,PA⊥x轴,点P在上,点C,D在上,
设P(m,),
则C(m,),A(m,0),B(0,),令,
则,即D(,),
∴PC==,PD==,
∵,,即,
又∠DPC=∠BPA,
∴△PDC∽△PBA,
∴∠PDC=∠PBC,
∴CD∥AB,故①正确;
△PDC的面积===,故③正确;
=
=
=
=
=,故②错误;
故选B.
4.(2021•山西)已知反比例函数,则下列描述不正确的是(D )
A.图象位于第一、第三象限 B.图象必经过点(4,)
C.图象不可能与坐标轴相交 D. y 随 x 的增大而减小
5. (2021•湖北省宜昌市)某气球内充满了一定质量m的气体,当温度不变时,气球内气体的气压p(单位:kPa)是气体体积V(单位:m3)的反比例函数:p=,能够反映两个变量p和V函数关系的图象是( )
A. B.
C. D.
【分析】直接利用反比例函数的性质,结合p,V的取值范围得出其函数图象分布在第一象限,即可得出答案.
【解答】解:∵气球内气体的气压p(单位:kPa)是气体体积V(单位:m3)的反比例函数:p=(V,p都大于零),
∴能够反映两个变量p和V函数关系的图象是:.
故选:B.
6.(2021•四川省达州市)在反比例函数y=(k为常数)上有三点A(x1,y1),B(x2,y2),C(x3,y3),若x1<0<x2<x3,则y1,y2,y3的大小关系为( )
A.y1<y2<y3 B.y2<y1<y3 C.y1<y3<y2 D.y3<y2<y1
【分析】根据反比例函数的性质得到反比例函数图象分布在第一、三象限,然后利用x1<0<x2<x3得到y1<0,0<y3<y2.
【解答】解:∵k2+1>5,
∴反比例函数图象在第一、三象限,
∵x1<0<x8<x3,
∴y1<4,0<y3<y5,
∴y1<y3<y8.
故选:C.
7. (2021•四川省乐山市)如图,直线与反比例函数的图象相交于A、两点,线段的中点为点,过点作轴的垂线,垂足为点.直线过原点和点.若直线上存在点,满足,则的值为( )
A. B. 3或 C. 或 D. 3
【答案】A
【解析】
【分析】根据题意,得,,直线:;根据一次函数性质,得;根据勾股定理,得;连接,,,根据等腰三角形三线合一性质,得,;根据勾股定理逆定理,得;结合圆的性质,得点、B、D、P共圆,直线和AB交于点F,点F为圆心;根据圆周角、圆心角、等腰三角形的性质,得;分或两种情况,根据圆周角、二次根式的性质计算,即可得到答案.
【详解】根据题意,得,,即,
∵直线过原点和点
∴直线:
∵在直线上
∴
∴
连接,,
∴,线段的中点为点
∴,
过点作轴的垂线,垂足为点
∴
∴,,
∴
∴
∴点、B、D、P共圆,直线和AB交于点F,点F为圆心
∴
∵,
∴
∵,且
∴
∴
∴
∴或
当时,和位于直线两侧,即
∴不符合题意
∴,且
∴,
∴
∴
∴
故选:A.
8. (2021•天津市)若点都在反比例函数的图象上,则的大小关系是( )
A. B. C. D.
【答案】B
【解析】
【分析】将A、B、C三点坐标代入反比例函数解析式,即求出的值,即可比较得出答案.
【详解】分别将A、B、C三点坐标代入反比例函数解析式得:
、、.
则.
故选B.
9. (2021•浙江省嘉兴市)已知三个点(x1,y1),(x2,y2),(x3,y3)在反比例函数y=的图象上,其中x1<x2<0<x3,下列结论中正确的是( )
A.y2<y1<0<y3 B.y1<y2<0<y3 C.y3<0<y2<y1 D.y3<0<y1<y2
【分析】先根据反比例函数的解析式判断出函数图象所在的象限,再根据x1<x2<0<x3即可得出结论
【解答】解:∵反比例函数y=中,k=2>0,
∴函数图象的两个分支分别位于一、三象限,且在每一象限内,y随x的增大而减小.
∵x1<x2<0<x3,
∴A、B两点在第三象限,C点在第一象限,
∴y2<y1<0<y3.
故选:A.
10、(2021•浙江省温州市)如图,点A,B在反比例函数y=(k>0,x>0),AC⊥x轴于点C,BD⊥x轴于点D,连结AE.若OE=1,OC=,AC=AE,则k的值为( )
A.2 B. C. D.2
【分析】根据题意求得B(k,1),进而求得A(k,),然后根据勾股定理得到∴()2=(k)2+()2,解方程即可求得k的值.
【解答】解:∵BD⊥x轴于点D,BE⊥y轴于点E,
∴四边形BDOE是矩形,
∴BD=OE=1,
把y=1代入y=,求得x=k,
∴B(k,7),
∴OD=k,
∵OC=OD,
∴OC=k,
∵AC⊥x轴于点C,
把x=k代入y=得,
∴AE=AC=,
∵OC=EF=k,AF=,
在Rt△AEF中,AE2=EF5+AF2,
∴()2=(k)2+()2,解得k=±,
∵在第一象限,
∴k=,
故选:B.
11. (2021•湖北省荆门市)在同一直角坐标系中,函数y=kx﹣k与y=(k≠0)的大致图象是( )
A.①② B.②③ C.②④ D.③④
【分析】根据k的取值范围,分别讨论k>0和k<0时的情况,然后根据一次函数和反比例函数图象的特点进行选择正确答案.
【解答】解:当k>0时,
一次函数y=kx﹣k经过一、三、四象限,
函数的y=(k≠0)的图象在一、二象限,
故选项②的图象符合要求.
当k<0时,
一次函数y=kx﹣k经过一、二、四象限,
函数的y=(k≠0)的图象经过三、四象限,
故选项③的图象符合要求.
故选:B.
12. (2021•湖北省十堰市)如图,反比例函数的图象经过点,过A作轴于点B,连,直线,交x轴于点C,交y轴于点D,若点B关于直线的对称点恰好落在该反比例函数图像上,则D点纵坐标为( )
A. B. C. D.
【答案】A
【解析】
【分析】设点B关于直线的对称点,易得求出a的值,再根据勾股定理得到两点间的距离,即可求解.
【详解】解:∵反比例函数的图象经过点,
∴,
∴直线OA的解析式为,
∵,
∴设直线CD的解析式为,
则,
设点B关于直线的对称点,
则①,
且,
即,解得,
代入①可得,
故选:A.
13. (2021•重庆市A)如图,在平面直角坐标系中,菱形ABCD的顶点D在第二象限,其余顶点都在第一象限,AB∥X轴,AO⊥AD,AO=AD.过点A作AE⊥CD,垂足为E,DE=4CE.反比例函数的图象经过点E,与边AB交于点F,连接OE,OF,EF.若,则k的值为( )
A. B. C. 7 D.
【答案】A
【解析】
【分析】延长EA交x轴于点G,过点F作x轴的垂线,垂足分别为H,则可得△DEA≌△AGO,从而可得DE=AG,AE=OG,若设CE=a,则DE=AG=4a,AD=DC=DE+CE=5a,由勾股定理得AE=OG=3a,故可得点E、A的坐标,由AB与x轴平行,从而也可得点F的坐标,根据 ,即可求得a的值,从而可求得k的值.
【详解】如图,延长EA交x轴于点G,过点F作x轴的垂线,垂足分别为H
∵四边形ABCD是菱形
∴CD=AD=AB,CD∥AB
∵AB∥x轴,AE⊥CD
∴EG⊥x轴,∠D+∠DAE=90゜
∵OA⊥AD
∴∠DAE+∠GAO=90゜
∴∠GAO=∠D
∵OA=OD
∴△DEA≌△AGO(AAS)
∴DE=AG,AE=OG
设CE=a,则DE=AG=4CE=4a,AD=AB=DC=DE+CE=5a
在Rt△AED中,由勾股定理得:AE=3a
∴OG=AE=3a,GE=AG+AE=7a
∴A(3a,4a),E(3a,7a)
∵AB∥x轴,AG⊥x轴,FH⊥x轴
∴四边形AGHF是矩形
∴FH=AG=3a,AF=GH
∵E点在双曲线上
∴
即
∵F点在双曲线上,且F点的纵坐标为4a
∴
即
∴
∵
∴
解得:
∴
故选:A.
14. (2021•重庆市B)如图,在平面直角坐标系中,矩形ABCD的顶点A,B在x轴的正半轴上,反比例函数y=(k>0,x>0)的图象经过顶点D,分别与对角线AC,边BC交于点E,F,连接EF,AF.若点E为AC的中点,△AEF的面积为1,则k的值为( )
A. B. C.2 D.3
【分析】首先设A(a,0),表示出D(a,),再根据D,E,F都在双曲线上,依次表示出坐标,再由S△AEF=1,转化为S△ACF=2,列出等式即可求得.
【解答】解:设A(a,0),
∵矩形ABCD,
∴D(a,),
∵矩形ABCD,E为AC的中点,
则E也为BD的中点,
∵点B在x轴上,
∴E的纵坐标为,
∴,
∵E为AC的中点,
∴点C(3a,),
∴点F(3a,),
∵△AEF的面积为1,AE=EC,
∴S△ACF=2,
∴,
解得:k=3.
故选:D.
15. (2021•黑龙江省龙东地区)如图,在平面直角坐标系中,菱形的边轴,垂足为,顶点在第二象限,顶点在轴正半轴上,反比例函数的图象同时经过顶点.若点的横坐标为5,,则的值为( )
A. B. C. D.
【答案】A
【解析】
【分析】由题意易得,则设DE=x,BE=2x,然后可由勾股定理得,求解x,进而可得点,则,最后根据反比例函数的性质可求解.
【详解】解:∵四边形是菱形,
∴,
∵轴,
∴,
∴,
∵点的横坐标为5,
∴点,,
∵,
∴设DE=x,BE=2x,则,
∴在Rt△AEB中,由勾股定理得:,
解得:(舍去),
∴,
∴点,
∴,
解得:;
故选A.
16. (2021•贵州省贵阳市)已知反比例函数y=(k≠0)的图象与正比例函数y=ax(a≠0)的图象相交于A,B两点,若点A的坐标是(1,2),则点B的坐标是( )
A.(﹣1,2) B.(1,﹣2) C.(﹣1,﹣2) D.(2,1)
【分析】反比例函数的图象是中心对称图形,则经过原点的直线的两个交点一定关于原点对称.
【解答】解:根据题意,知
点A与B关于原点对称,
∵点A的坐标是(1,2),
∴B点的坐标为(﹣1,﹣2).
故选:C.
17. (2021•江苏省无锡市)8.一次函数y=x+n的图象与x轴交于点B,与反比例函数y=(m>0)的图象交于点A(1,m),且△AOB的面积为1,则m的值是( )
A.1 B.2 C.3 D.4
【分析】由已知得B(﹣n,0),而A(1,m)在一次函数y=x+n的图象上,可得n=m﹣1,即B(1﹣m,0),根据△AOB的面积为1,可列方程|1﹣m|•m=1,即可解得m=2.
【解答】解:在y=x+n中,令y=0,得x=﹣n,
∴B(﹣n,0),
∵A(1,m)在一次函数y=x+n的图象上,
∴m=1+n,即n=m﹣1,
∴B(1﹣m,0),
∵△AOB的面积为1,m>0,
∴OB•|yA|=1,即|1﹣m|•m=1,
解得m=2或m=﹣1(舍去),
∴m=2,
故选:B.
18 . (2021•内蒙古包头市)如图,在平面直角坐标系中,矩形OABC的OA边在x轴的正半轴上,OC边在y轴的正半轴上,点B的坐标为(4,2),反比例函数的图象与BC交于点D,与对角线OB交于点E,与AB交于点F,连接OD,DE,EF,DF.下列结论:①;②;③;④.其中正确的结论有( )
A. 4个 B. 3个 C. 2个 D. 1个
【答案】A
19. (2021•内蒙古通辽市)定义:一次函数y=ax+b的特征数为[a,b],若一次函数y=﹣2x+m的图象向上平移3个单位长度后与反比例函数y=﹣的图象交于A,B两点,且点A,B关于原点对称,则一次函数y=﹣2x+m的特征数是( )
A.[2,3] B.[2,﹣3] C.[﹣2,3] D.[﹣2,﹣3]
【分析】将一次函数y=﹣2x+m的图像向上平移3个单位长度后,得到解析式y=﹣2x+m+3,联立一次函数与反比例函数解析式,得到关于x的一元二次方程,设A(x1,0),B(x2,0),所以x1与x2是一元二次方程的两根,根据根与系数关系,得到,又A,B两点关于原点对称,所以x1+x2=0,则,得到m=﹣3,根据定义,得到一次函数y=﹣2x+m的特征数是[﹣2,﹣3].
【解答】解:将一次函数y=﹣2x+m向上平移3个单位长度后得到y=﹣2x+m+3,
设A(x1,0),B(x2,0),
联立,
∴2x2﹣(m+3)x﹣3=0,
∵x1和x2是方程的两根,
∴,
又∵A,B两点关于原点对称,
∴x1+x2=0,
∴,
∴m=﹣3,
根据定义,一次函数y=﹣2x+m的特征数是[﹣2,﹣3],
故选:D.
二.填空题
1. (2021•甘肃省定西市)若点A(﹣3,y1),B(﹣4,y2)在反比例函数y=的图象上,则y1 < y2.(填“>”或“<”或“=”)
【分析】反比例函数y=的图象在一、三象限,在每个象限内,y随x的增大而减小,判断出y的值的大小关系.
【解答】解:∵k=a2+1>0,
∴反比例函数y=的图象在一、三象限,且在每个象限内y随x的增大而减小,
∵点A(﹣3,y1),B(﹣4,y2)同在第三象限,且﹣3>﹣4,
∴y1<y2,
故答案为<.
2. (2021•湖北省武汉市)已知点A(a,y1),B(a+1,y2)在反比例函数y=(m是常数)的图象上,且y1<y2,则a的取值范围是 ﹣1<a<0 .
【分析】根据反比例函数的性质分两种情况进行讨论,①当点A(a,y1),B(a+1,y2)在同一象限时,②当点A(a,y1),B(a+1,y2)在不同象限时.
【解答】解:∵k=m2+1>5,
∴反比例函数y=(m是常数)的图象在一,在每个象限,
①当A(a,y4),B(a+1,y2)在同一象限,
∵y3<y2,
∴a>a+1,
此不等式无解;
②当点A(a,y8)、B(a+1,y2)在不同象限,
∵y2<y2,
∴a<0,a+5>0,
解得:﹣1<a<6,
故答案为﹣1<a<0.
3. (2021•株洲市)点、是反比例函数图像上的两点,满足:当时,均有,则的取值范围是__________.
【答案】k<0
4.(2021•江苏省南京市)如图,正比例函数与函数的图像交于A,B两点,轴,轴,则________.
【答案】12
【解析】
【分析】先设出A点坐标,再依次表示出B、C两点坐标,求出线段BC和AC的表达式,最后利用三角形面积公式即可求解.
【详解】解:设A(t,),
∵正比例函数与函数的图像交于A,B两点,
∴B(-t,-),
∵轴,轴,
∴C(t,-),
∴;
故答案为:12.
5. (2021•宿迁市)如图,点A、B在反比例函数的图像上,延长AB交轴于C点,若△AOC的面积是12,且点B是AC的中点,则 =__________.
【答案】8
【解析】
【分析】由的面积为12,故作,设,即可表示的面积,再利用中点坐标公式表示B点坐标,利用B点在反比例图像上即可求解.
【详解】解:作,设,
的面积为12
B点是AC中点
B点坐标
B点在反比例图像上
又
故答案是:8.
6. (2021•四川省广元市)如图,点在反比例函数的图象上,点M在x轴的正半轴上,点N在y轴的负半轴上,且.点是线段上一动点,过点A和P分别作x轴的垂线,垂足为点D和E,连接、.当时,x的取值范围是________.
【答案】
【解析】
【分析】先求出反比例函数的解析式,再求出线段MN的解析式,最后联立两个解析式求出B和C两个点的坐标,再根据k的几何意义,确定P点位置,即可得到相应的x的取值范围.
【详解】解:∵点
∴,
所以反比例函数的解析式为:,
因为,
∴,
设线段MN解析式为:,
∴,
∴,
∴线段MN解析式为:,
联立以上两个解析式得:,
解得:或,经检验,符合题意;
由图可知,两个函数的图像交点分别为点B和点C,
∴,,
∵,
∴P点应位于B和C两点之间,
∴,
故答案为:.
7. (2021•浙江省绍兴市)如图,在平面直角坐标系中,正方形ABCD的顶点A在x轴正半轴上,C在第一象限,顶点D的坐标(,2),反比例函数y=(常数k>0,x>0)的图象恰好经过正方形ABCD的两个顶点,则k的值是 5或22.5 .
【分析】作DM⊥x轴于M,BN⊥轴于N,过C点作x轴的平行线,交DM于E,交BN于F,通过证得三角形求得表示出B、C的坐标,然后根据反比例函数系数k=xy即可求得结果.
【解答】解:作DM⊥x轴于M,BN⊥轴于N,交DM于E,
正方形ABCD中,∠BAD=90°,
∴∠DAM+∠BAN=90°,
∵∠ADM+∠DAM=90°,
∴∠ADM=∠BAN,
在△ADM和△BAN中,
,
∴△ADM≌△BAN(AAS),
∴AM=BN,DM=AN,
∵顶点D的坐标(,6).
∴OM=,DM=6,
同理:△ADM≌△DCE,
∴AM=DE,CE=DM,
∴AM=BN=DE,DM=AN=CE=2,
设AM=BN=DE=m,
∴ON=+m+2=4.5+m,
∴B(4.5+m,m),4+m),
当反比例函数y=(常数k>0、D时×2=5;
当反比例函数y=(常数k>5、c时,
解得m=3,
∴k=4.7×(2+3)=22.6,
故答案为5或22.5.
8. (2021•湖北省荆门市)如图,在平面直角坐标系中,Rt△OAB斜边上的高为1,∠AOB=30°,将Rt△OAB绕原点顺时针旋转90°得到Rt△OCD,点A的对应点C恰好在函数y=(k≠0)的图象上,若在y=的图象上另有一点M使得∠MOC=30°,则点M的坐标为 (,1) .
【分析】作AE⊥OB于E,MF⊥x轴于F,则AE=1,解直角三角形求得OE=,即可求得C的坐标,根据待定系数法求的反比例函数的解析式,进一步表示出M(n,n),代入解析式即可求得结果.
【解答】解:作AE⊥OB于E,MF⊥x轴于F,则AE=1,
∵∠AOB=30°,
∴OE=AE=,
将Rt△OAB绕原点顺时针旋转90°得到Rt△OCD,点A的对应点C为(1,),
∵点C在函数y=(k≠0)的图象上,
∴k=1×=,
∴y=,
∵∠COD=∠AOB=30°,∠MOC=30°,
∴∠DOM=60°,
∴∠MOF=30°,
∴OF=MF,
设MF=n,则OF=n,
∴M(n,n),
∵点M在函数y=的图象上,
∴n=,
∴n=1(负数舍去),
∴M(,1),
故答案为(,1).
9. 2021•北京市)在平面直角坐标系xOy中,若反比例函数y=(k≠0)的图象经过点A(1,2)和点B(﹣1,m),则m的值为 .-2
10. (2021•福建省)若反比例函数y=的图象过点(1,1),则k的值等于 .1
11. (2021•广西玉林市) 如图,是等腰三角形,过原点,底边轴双曲线过,两点,过点作轴交双曲线于点,若,则的值是______.
【答案】3
12. (2021•山东省威海市)已知点A为直线上一点,过点A作轴,交双曲线于点B.若点A与点B关于y轴对称,则点A的坐标为_____________.
【答案】或
【解析】
【分析】设点A坐标为,则点B的坐标为,将点B坐标代入,解出x的值即可求得A点坐标.
【详解】解:∵点A为直线上一点,
∴设点A坐标为,
则点B的坐标为,
∵点B在双曲线上,
将代入中得:
,
解得:,
当时,,
当时,,
∴点A的坐标为或,
故答案为:或.
13. (2021•呼和浩特市)正比例函数与反比例函数的图象交于A,B两点,若A点坐标为,则__________.
14. (2021•齐齐哈尔市)如图,点A是反比例函数图象上一点,轴于点C且与反比例函数的图象交于点B, ,连接OA,OB,若的面积为6,则_________.
【答案】
【解析】
【分析】利用反比例函数比例系数k的几何意义得到S△AOC=||=-,S△BOC=||=-,利用AB=3BC得到S△ABO=3S△OBC=6,所以-=2,解得=-4,再利用-=6+2得=-16,然后计算+的值.
【详解】解:∵AC⊥x轴于点C,与反比例函数y=(x<0)图象交于点B,
而<0,<0,
∴S△AOC=||=-,S△BOC=||=-,
∵AB=3BC,
∴S△ABO=3S△OBC=6,
即-=2,解得=-4,
∵-=6+2,解得=-16,
∴+=-16-4=-20.
故答案为:-20.
15. (2021•贵州省铜仁市)如图,矩形的顶点在反比例函数的图象上,矩形的面积为3,则______________;
【答案】3
16. (2021•浙江省衢州卷) 将一副三角板如图放置在平面直角坐标系中,顶点A与原点O重合,AB在x轴正半轴上,且,点E在AD上,,将这副三角板整体向右平移_______个单位,C,E两点同时落在反比例函数的图象上.
【答案】
17. (2021•绥化市)如图,在平面直角坐标系中,为坐标原点,垂直于轴,以为对称轴作的轴对称图形,对称轴与线段相交于点,点的对应点恰好落在的双曲线上.点的对应点分别是点.若点为的中点,且,则的值为____.
【答案】
【解析】
【分析】先利用轴对称和中点的定义,确定EG和EO之间的关系,再利用平行线分线段成比例定理及推论,得到FG和OD之间的关系,设EG=x,FG=y,用它们表示出D点坐标,接着得到B点坐标,利用,得到,再利用反比例函数的定义,计算出B点横纵坐标的积,即为所求k的值.
【详解】解:如图所示,由轴对称的性质可知:GE=GA,CG=OG,BC=OD,
∵点为的中点,
∴AE=OA,
∴,
∵MN∥y轴,
∴,
∴,
∵,
∴,
∴,
∴,
设EG=x,FG=y,则OG=3x,OD=4y,
∴,
因为D点和B点关于MN对称,
∴
∵,
∴
∴,
∵点恰好落在的双曲线上,
∴,
故答案为:.
18.(2021•深圳)如图,已知反比例函数过A,B两点,A点坐标,直线经过原点,将线段绕点B顺时针旋转90°得到线段,则C点坐标为________.
【解答】设:,反比例:
将点A代入可得:
;
联立可得:
过点B作y轴的平行线l
过点A,点C作l的垂线,分别交于D,E两点
则
利用“一线三垂直”易证
,
∴.
三、解答题
1. (2021•湖北省黄冈市)如图,反比例函数y=的图象与一次函数y=mx+n的图象相交于A(a,﹣1),B(﹣1,3)
(1)求反比例函数和一次函数的解析式;
(2)设直线AB交y轴于点C,点N(t,0)是x轴正半轴上的一个动点的图象于点M,连接CN四边形COMN>3,求t的取值范围.
【分析】(1)将点B,点A坐标代入反比例函数的解析式,可求a和k的值,利用待定系数法可求一次函数解析式;
(2)先求出点C坐标,由面积关系的可求解.
【解答】解:(1)∵反比例函数y=的图象与一次函数y=mx+n的图象相交于A(a,B(﹣1,
∴k=﹣1×8=a×(﹣1),
∴k=﹣3,a=7,
∴点A(3,﹣1),
由题意可得:,
解得:,
∴一次函数解析式为y=﹣x+4;
(2)∵直线AB交y轴于点C,
∴点C(0,2),
∴S四边形COMN=S△OMN+S△OCN=+×2×t,
∵S四边形COMN>3,
∴+×2×t>3,
∴t>.
2. (2021•湖南省常德市)如图,在中,.轴,O为坐标原点,A的坐标为,反比例函数的图象的一支过A点,反比例函数的图象的一支过B点,过A作轴于H,若的面积为.
(1)求n的值;
(2)求反比例函数的解析式.
【答案】(1)1;(2)
【解析】
【分析】(1)根据三角形面积公式求解即可;
(2)证明,求出BE的长即可得出结论.
【详解】解:(1)∵A,且轴
∴AH=,OH=n
又的面积为.
∴ ,即
解得,;
(2)由(1)得,AH=,OH=1
∴AO=2
如图,
∵,轴,
∴,四边形AHOE是矩形,
∴AE=OH=1
又
∴
∴,即:
解得,BE=3
∴B(-3,1)
∵B在反比例函数的图象上,
∴
∴.
3. (2021•岳阳市) 如图,已知反比例函数与正比例函数的图象交于,两点.
(1)求该反比例函数的表达式;
(2)若点在轴上,且的面积为3,求点的坐标.
【答案】(1);(2)或
4. (2021•株洲市)如图所示,在平面直角坐标系中,一次函数的图像与函数的图像(记为)交于点A,过点A作轴于点,且,点在线段上(不含端点),且,过点作直线轴,交于点,交图像于点.
(1)求的值,并且用含的式子表示点的横坐标;
(2)连接、、,记、的面积分别为、,设,求的最大值.
【答案】(1),D点横坐标为;(2)
5. (2021•江西省)如图,正比例函数y=x的图象与反比例函数y=(x>0)的图象交于点A(1,a)在△ABC中,∠ACB=90°,CA=CB,点C坐标为(﹣2,0).
(1)求k的值;
(2)求AB所在直线的解析式.
【分析】(1)先求得A的坐标,然后根据待定系数法即可求得k的值;
(2)作AD⊥x轴于D,BE⊥x轴于E,通过证得△BCE≌△CAD,求得B(﹣3,3),然后根据待定系数法即可求得直线AB的解析式.
【解答】解:(1)∵正比例函数y=x的图象经过点A(1,a),
∴a=1,
∴A(1,1),
∵点A在反比例函数y=(x>0)的图象上,
∴k=1×1=1;
(2)作AD⊥x轴于D,BE⊥x轴于E,
∵A(1,1),C(﹣2,0),
∴AD=1,CD=3,
∵∠ACB=90°,
∴∠ACD+∠BCE=90°,
∵∠ACD+∠CAD=90°,
∴∠BCE=∠CAD,
在△BCE和△CAD中,
,
∴△BCE≌△CAD(AAS),
∴CE=AD=1,BE=CD=3,
∴B(﹣3,3),
设直线AB的解析式为y=mx+n,
∴,解得,
∴直线AB的解析式为y=﹣+.
6. (2021•山东省聊城市)如图,过C点的直线y=﹣x﹣2与x轴,y轴分别交于点A,B两点,且BC=AB,过点C作CH⊥x轴,垂足为点H,交反比例函数y=(x>0)的图象于点D,连接OD,△ODH的面积为6
(1)求k值和点D的坐标;
(2)如图,连接BD,OC,点E在直线y=﹣x﹣2上,且位于第二象限内,若△BDE的面积是△OCD面积的2倍,求点E的坐标.
【答案】(1),点 D 坐标为(4,3);(2)点E的坐标为(-8,2)
【解析】
【分析】(1)结合反比例函数的几何意义即可求解值;由轴可知轴,利用平行线分线段成比例即可求解D点坐标;
(2)可知和的面积相等,由函数图像可知、、的面积关系,再结合题意,即可求CD边上高的关系,故作,垂足为F,即可求解E点横坐标,最后由E点在直线AB上即可求解.
【详解】解∶(1)设点 D 坐标为(m,n),
由题意得.
∵点 D在的图象上,.
∵直线的图象与轴交于点A,
∴点A 的坐标为(-4,0).
∵CHx轴,CH//y 轴..
点D在反比例函数的图象上,
点 D 坐标为(4,3)
(2)由(1)知轴,.
.
过点E作EFCD,垂足为点 F,交y轴于点M,
.
.
∴点 E 的横坐标为-8.
∵点E 在直线上,∴点E的坐标为(-8,2).
7. (2021•山东省泰安市)如图,点P为函数y=x+1与函数y=(x>0)图象的交点,点P的纵坐标为4,PB⊥x轴,垂足为点B.
(1)求m的值;
(2)点M是函数y=(x>0)图象上一动点,过点M作MD⊥BP于点D,若tan∠PMD=,求点M的坐标.
【分析】(1)根据点P为函数y=x+1图象的点,点P的纵坐标为4,可以求得点P的坐标,进而求得m的值;
(2)设点M的坐标(x,y),分两种情况:点M在点P右侧,点M在点P左侧,根据tan∠PMD=得=,根据点P的坐标求出x、y的值,即可得出答案.
【解答】解:∵点P为函数y=x+1图象的点,点P的纵坐标为4,
∴4=x+1,解得:x=6,
∴点P(6,4),
∵点P为函数y=x+1与函数y=(x>0)图象的交点,
∴4=,
∴m=24;
(2)设点M的坐标(x,y),
∵tan∠PMD=,
∴=,
①点M在点P右侧,如图,
∵点P(6,4),
∴PD=4﹣y,DM=x﹣6,
∴=,
∵xy=m=24,
∴y=,
∴2(4﹣)=x﹣6,解得:x=6或8,
∵点M在点P右侧,
∴x=8,
∴y=3,
∴点M的坐标为(8,3);
②点M在点P左侧,
∵点P(6,4),
∴PD=y﹣4,DM=6﹣x,
∴=,
∵xy=m=24,
∴y=,
∴2(4﹣)=x﹣6,解得:x=6或8,
∵点M在点P左侧,
∴此种情况不存在;
∴点M的坐标为(8,3).
8. (2021•湖北省随州市)如图,一次函数的图象与轴、轴分别交于点,,与反比例函数()的图象交于点,.
(1)分别求出两个函数的解析式;
(2)连接,求的面积.
(1),;(2)3
【分析】
(1)将点C、D的横、纵坐标代入反比例函数的解析式,求得m、n的值,从而点D纵坐标已知,将点C、D的横、纵坐标代入一次函数的解析式,求得k、b的值,从而两个函数解析式可求;
(2)求出点B的坐标,可知OB的长,利用三角形的面积公式可求三角形BOD的面积.
【详解】
解:(1)∵双曲线(m>0)过点C(1,2)和D(2,n),
∴,解得,.
∴反比例函数的解析式为.
∵直线过点C(1,2)和D(2,1),
∴,解得,.
∴一次函数的解析式为.
(2)当x=0时,y1=3,即B(0,3).
∴.
如图所示,过点D作DE⊥y轴于点E.
∵D(2,1),
∴DE=2.
∴
【点睛】
本题考查了待定系数法求函数解析式、二元一次方程组、三角形的面积等知识点,熟知解析式、点坐标、线段长三者的相互转化是解题的关键.
11.
9. (2021•山东省菏泽市)如图,在平面直角坐标系中,矩形OABC的两边OC、OA分别在坐标轴上,且OA=2,OC=4,连接OB.反比例函数y=(x>0)的图象经过线段OB的中点D,并与AB、BC分别交于点E、F.一次函数y=k2x+b的图象经过E、F两点.
(1)分别求出一次函数和反比例函数的表达式;
(2)点P是x轴上一动点,当PE+PF的值最小时,点P的坐标为 (,0) .
【分析】(1)由矩形的性质及中点坐标公式可得D(2,1),从而可得反比例函数表达式;再求出点E、F坐标可用待定系数法解得一次函数的解析式;
(2)作点E关于x轴的对称点E',连接E'F交x轴于点P,则此时PE+PF最小.求出直线E'F的解析式后令y=0,即可得到点P坐标.
【解答】解:(1)∵四边形OABC为矩形,OA=BC=2,OC=4,
∴B(4,2).
由中点坐标公式可得点D坐标为(2,1),
∵反比例函数y=(x>0)的图象经过线段OB的中点D,
∴k1=xy=2×1=2,
故反比例函数表达式为y=.
令y=2,则x=1;令x=4,则y=.
故点E坐标为(1,2),F(4,).
设直线EF的解析式为y=kx+b,代入E、F坐标得:
,解得:.
故一次函数的解析式为y=.
(2)作点E关于x轴的对称点E',连接E'F交x轴于点P,则此时PE+PF最小.如图.
由E坐标可得对称点E'(1,﹣2),
设直线E'F的解析式为y=mx+n,代入点E'、F坐标,得:
,解得:.
则直线E'F的解析式为y=,
令y=0,则x=.
∴点P坐标为(,0).
故答案为:(,0).
10. (2021•四川省成都市)如图,在平面直角坐标系xOy中,一次函数y=x+的图象与反比例函数y=(x>0)的图象相交于点A(a,3),与x轴相交于点B.
(1)求反比例函数的表达式;
(2)过点A的直线交反比例函数的图象于另一点C,交x轴正半轴于点D,当△ABD是以BD为底的等腰三角形时,求直线AD的函数表达式及点C的坐标.
【分析】(1)根据一次函数y=x+的图象经过点A(a,3),求出点A的坐标,再代入y=,即可求得答案;
(2)过点A作AE⊥x轴于点E,先求出点B的坐标,再根据△ABD是以BD为底边的等腰三角形,可求出点D的坐标,利用待定系数法即可求出直线AD的解析式,联立直线AD解析式和反比例函数解析式并求解即可得出点C的坐标.
【解答】(1)∵一次函数y=x+的图象经过点A(a,3),
∴a+=3,
解得:a=2,
∴A(2,3),
将A(2,3)代入y=(x>0),
得:3=,
∴k=6,
∴反比例函数的表达式为y=;
(2)如图,过点A作AE⊥x轴于点E,
在y=x+中,令y=0,得x+=0,
解得:x=﹣2,
∴B(﹣2,0),
∵E(2,0),
∴BE=2﹣(﹣2)=4,
∵△ABD是以BD为底边的等腰三角形,
∴AB=AD,
∵AE⊥BD,
∴DE=BE=4,
∴D(6,0),
设直线AD的函数表达式为y=mx+n,
∵A(2,3),D(6,0),
∴,
解得:,
∴直线AD的函数表达式为y=﹣x+,
联立方程组:,
解得:(舍去),,
∴点C的坐标为(4,).
11. (2021•广东省)在平面直角坐标系中,一次函数的图象与轴、轴分别交于、两点,且与反比例函数图象的一个交点为.
(1)求的值;
(2)若,求的值.
【答案】
解:(1)为反比例函数上一点,
代入得,
.…………………………2分
(2)令,即,
,,
令,,,
.
由图象得,可分为以下两种情况,
①在轴正半轴时,,
,
过作轴交轴于点,又,,
,,
,
,
,
,.…………………………5分
②的轴负半轴时,,过作轴,
,,,
,
,
,,
,
,…………………………7分
综上,或.…………………………8分
12. (2021•四川省广元市)如图,直线与双曲线相交于点A、B,已知点A的横坐标为1,
(1)求直线的解析式及点B的坐标;
(2)以线段为斜边在直线的上方作等腰直角三角形.求经过点C的双曲线的解析式.
【答案】(1)y=-0.5x+2;点B坐标为(3,0.5);(2)过点C的双曲线解析式为.
【解析】
【分析】(1)把点A横坐标代入反比例函数解析式,可求出点A坐标,代入可求出直线解析式,联立反比例函数与一次函数解析式即可得点B坐标;
(2)设点C坐标为(m,n),过点C的双曲线解析式为,根据点A、B坐标可求出AB的长,根据等腰直角三角形的性质可得AC=BC=,根据两点间距离个数求出m、n的值即可得点C坐标,代入反比例函数解析式求出k值即可得答案.
【详解】(1)∵点A在双曲线上,点A的横坐标为1,
∴当x=1时,y=1.5,
∴点A坐标为(1,1.5),
∵直线与双曲线相交于点A、B,
∴k+2=1.5,
解得:k=-0.5,
∴直线的解析式为y=-0.5x+2,
联立反比例函数与一次函数解析式得,
解得:,(舍去),
∴点B坐标为(3,0.5).
(2)设点C坐标为(m,n),过点C的双曲线解析式为,
∵A(1,1.5),B(3,0.5),
∴AB==,
∵△ABC等腰直角三角形,
∴AC=BC==,
∴,
整理得:,
∴,
解得:,
∴或0(舍去),
∴点C坐标为(,2),
把点C坐标代入双曲线解析式得:,
解得:,
∴过点C的双曲线解析式为.
13. (2021•四川省乐山市) 如图,直线分别交轴,轴于、两点,交反比例函数的图象于、两点.若,且的面积为4
(1)求的值;
(2)当点的横坐标为时,求的面积.
【答案】(1)-6;(2)8
【解析】
【分析】(1)过作垂直于轴,垂足为,证明.根据相似三角形的性质可得,,由此可得,.再由反比例函数比例系数k的几何意义即可求得k值.
(2)先求得,,再利用待定系数法求得直线的解析式为.与反比例函数的解析式联立方程组,解方程组求得.再根据即可求解.
【详解】(1)过作垂直于轴,垂足为,
∴,
∴.
∵,,
∴,,
∴,.
∴,,即.
(2)由(1)知,∴.
∵,∴,∴,.
设直线的解析式为,
将点、代入,得.
解得.
∴直线的解析式为.
联立方程组,解得,,
∴.
∴.
14. (2021•四川省凉山州)如图,中,,边OB在x轴上,反比例函数的图象经过斜边OA的中点M,与AB相交于点N,.
(1)求k的值;
(2)求直线MN的解析式.
【答案】(1)6;(2)
【解析】
【分析】(1)设点A坐标为(m,n),根据题意表示出点B,N,M的坐标,根据△AOB的面积得到,再根据M,N在反比例函数图像上得到方程,求出m值,即可得到n,可得M点坐标,代入反比例函数表达式,即可求得k值;
(2)由(1)得到M,N的坐标,再利用待定系数法即可求出MN的解析式.
【详解】解:(1)设点A坐标为(m,n),
∵∠ABO=90°,
∴B(m,0),又AN=,
∴N(m,),
∵△AOB的面积为12,
∴,即,
∵M为OA中点,
∴M(,),
∵M和N在反比例函数图像上,
∴,化简可得:,又,
∴,解得:,
∴,
∴M(2,3),代入,
得;
(2)由(1)可得:M(2,3),N(4,),
设直线MN的表达式为y=ax+b,
则,解得:,
∴直线MN的表达式为.
15. (2021•四川省南充市)如图,反比例函数的图象与过点A(0,﹣1),B(4,1)的直线交于点B和C.
(1)求直线AB和反比例函数的解析式;
(2)已知点D(﹣1,0),直线CD与反比例函数图象在第一象限的交点为E,直接写出点E的坐标,并求△BCE的面积.
【分析】(1)根据待定系数法求得即可;
(2)解析式联立,解方程组求得C的坐标,然后根据待定系数法求得直线CD的解析式,再与反比例函数解析式联立,解方程组即可求得E的坐标,然后根据正方形的面积减去三个直角三角形的面积即可求得△BCE的面积.
【解答】解:(1)设反比例函数解析式为y=,直线AB解析式为y=ax+b,
∵反比例函数的图象过点B(4,1),
∴k=4×1=4,
把点A(0,﹣1),B(4,1)代入y=ax+b得,
解得,
∴直线AB为y=,反比例函数的解析式为y=;
(2)解得或,
∴C(﹣2,﹣2),
设直线CD为y=mx+n,
把C(﹣2,﹣2),D(﹣1,0)代入得,
解得,
∴直线CD为y=2x+2,
由得或,
∴E(1,4),
∴S△BCE=6×6﹣×3﹣﹣=.
16. (2021•遂宁市)如图,一次函数=k x + b (k≠0)与反比例函数(m≠0)的图象交于点A(1,2)和B(-2,a),与y轴交于点M.
(1)求一次函数和反比例函数的解析式;
(2)在y轴上取一点N,当△AMN的面积为3时,求点N的坐标;
(3)将直线向下平移2个单位后得到直线y3,当函数值时,求x的取值范围.
【答案】(1)y1=x+1;;(2)N(0,7)或(0,-5);(3)-2<x<-1或1<x<2
【解析】
【分析】(1)先用待定系数法求反比例函数解析式,再求出B点坐标,再求一次函数解析式即可;
(2)根据面积求出MN长,再根据M点坐标求出N点坐标即可;
(3)求出直线y3解析式,再求出它与反比例函数图象的交点坐标,根据图象,可直接写出结果.
【详解】解:(1)∵过点A(1,2),
∴m=1×2=2,
即反比例函数:,
当x=-2时,a=-1,即B(-2,-1)
y1=kx+b过A(1,2)和B(-2,-1)
代入得,解得,
∴一次函数解析式为y1=x+1,
(2)当x=0时,代入y=x+1中得,y=1,即M(0,1)
∵S△AMN=1
∴MN=6,
∴N(0,7)或(0,-5),
(3)如图,设y2与y3的图像交于C,D两点
∵y1向下平移两个单位得y3且y1=x+1
∴y3=x-1,
联立得解得或
∴C(-1,-2),D(2,1),
在A、D两点之间或B、C两点之间时,y1>y2>y3,
∴-2<x<-1或1<x<2.
17. (2021•湖北省恩施州)如图,在平面直角坐标系中,Rt△ABC的斜边BC在x轴上,坐标原点是BC的中点,∠ABC=30°,BC=4,双曲线y=经过点A.
(1)求k;
(2)直线AC与双曲线y=﹣在第四象限交于点D,求△ABD的面积.
【分析】(1)作AH⊥BC于H,求出AH的长和OH的长确定A点坐标即可;
(2)求出直线AD的解析式,确定D点坐标,再根据三角形ABD的面积等于三角形ABC面积加三角形BCD面积即可求出.
【解答】解:(1)如图,作AH⊥BC于H,
∵Rt△ABC的斜边BC在x轴上,坐标原点是BC的中点,∠ABC=30°,BC=4,
∴OC=BC=2,AC=BC×sin30°=2,
∵∠HAC+∠ACO=90°,∠ABC+∠ACO=90°,
∴∠HAC=∠ABC=30°,
∴CH=AC×sin30°=1,OH=AC×cos30°=,
∴OH=OC﹣CH=2﹣1=1,
∴A(1,),
∵双曲线y=经过点A,
∴1=,
即k=;
(2)设直线AC的解析式为y=kx+b,
∵A(1,),C(2,0),
∴,
解得,
∴直线AC的解析式为y=﹣x+2,
∵直线AC与双曲线y=﹣在第四象限交于点D,
∴,
解得或,
∵D在第四象限,
∴D(3,﹣),
∴S△ABD=S△ABC+S△BCD=BC•BH+BC•(﹣yD)==4.
18. (2021•浙江省湖州市)已知在平面直角坐标系xOy中,点A是反比例函数(x>0)图象上的一个动点,连结AO,AO的延长线交反比例函数(k>0,x<0)的图象于点B,过点A作AE⊥y轴于点E.
(1)如图1,过点B作BF⊥x轴于点F,连结EF.①若k=1,求证:四边形AEFO是平行四边形;②连结BE,若k=4,求△BOE的面积.
(2)如图2,过点E作EP∥AB,交反比例函数(k>0,x<0)的图象于点P,连结OP.试探究:对于确定的实数k,动点A在运动过程中,△POE的面积是否会发生变化?请说明理由.
【答案】(1)①略;②1;(2)不变.
【解析】解:(1)①证明 设点的坐标为,
则当时,点的坐标为,
,
轴,
,
∴四边形是平行四边形.
②解 过点作轴于点,
轴,
,
,
,
∴当时,,即.
.
(2)解:不改变.
理由如下:
过点作轴于点与轴交于点,
设点的坐标为,点的坐标为,
则,
由题意,可知,四边形是平行四边形,
,
即,
,
解得,
异号,,
,
.
∴对于确定的实数,动点在运动过程中,的面积不会发生变化.
19. (2021•山东省济宁市)如图,Rt△ABC中,∠ACB=90°,AC=BC,点C(2,0),点B(0,4),反比例函数y=(x>0)的图象经过点A.
(1)求反比例函数的解析式;
(2)将直线OA向上平移m个单位后经过反比例函数y=(x>0)图象上的点(1,n),求m,n的值.
【分析】(1)过A作AD⊥x轴于D,证明△BOC≌△CDA,可得OB=CD,OC=AD,根据C(2,0),B(0,4),得A(6,2),而反比例函数y=(x>0)的图象经过点A,故2=,解得k=12,即可得反比例函数的解析式为y=;
(2)求出直线OA解析式为y=x,可得将直线OA向上平移m个单位后所得直线解析式为y=x+m,再由点(1,n)在反比例函数y=(x>0)图象上,得n=12,即直线OA向上平移m个单位后经过的点是(1,12),即可求出m=.
【解答】解:(1)过A作AD⊥x轴于D,如图:
∵∠ACB=90°,
∴∠OBC=90°﹣∠BCO=∠ACD,
在△BOC和△CDA中,
,
∴△BOC≌△CDA(AAS),
∴OB=CD,OC=AD,
∵C(2,0),B(0,4),
∴AD=2,CD=4,
∴A(6,2),
∵反比例函数y=(x>0)的图象经过点A,
∴2=,解得k=12,
∴反比例函数的解析式为y=;
(2)由(1)得A(6,2),
设直线OA解析式为y=tx,
则2=6t,解得t=,
∴直线OA解析式为y=x,
将直线OA向上平移m个单位后所得直线解析式为y=x+m,
∵点(1,n)在反比例函数y=(x>0)图象上,
∴n==12,
∴直线OA向上平移m个单位后经过的点是(1,12),
∴12=+m,
∴m=.
20. 2021•贵州省贵阳市)如图,一次函数y=kx﹣2k(k≠0)的图象与反比例函数y=(m﹣1≠0)的图象交于点C,与x轴交于点A,过点C作CB⊥y轴,垂足为B,若S△ABC=3.
(1)求点A的坐标及m的值;
(2)若AB=2,求一次函数的表达式.
【分析】(1)令y=0,则kx﹣2k=0,所以x=2,得到A(2,0),设C(a,b),因为BC⊥y轴,所以B(0,b),BC=﹣a,因为△ABC的面积为3,列出方程得到ab=﹣6,所以m﹣1=﹣6,所以m=﹣5;
(2)因为AB=2,在直角三角形AOB中,利用勾股定理列出方程,得到b2+4=8,得到b=2,从而C(﹣3,2),将C坐标代入到一次函数中即可求解.
【解答】解:(1)令y=0,则kx﹣2k=0,
∴x=2,
∴A(2,0),
设C(a,b),
∵CB⊥y轴,
∴B(0,b),
∴BC=﹣a,
∵S△ABC=3,
∴,
∴ab=﹣6,
∴m﹣1=ab=﹣6,
∴m=﹣5,
即A(2,0),m=﹣5;
(2)在Rt△AOB中,AB2=OA2+OB2,
∵,
∴b2+4=8,
∴b2=4,
∴b=±2,
∵b>0,
∴b=2,
∴a=﹣3,
∴C(﹣3,2),
将C代入到直线解析式中得k=,
∴一次函数的表达式为.
2021年全国中考数学真题分类汇编--函数:反比例函数(试卷版): 这是一份2021年全国中考数学真题分类汇编--函数:反比例函数(试卷版),共22页。
2021年全国中考数学真题分类汇编--函数:反比例函数(答案版): 这是一份2021年全国中考数学真题分类汇编--函数:反比例函数(答案版),共66页。
2021年全国中考数学真题分类汇编:反比例函数(无答案): 这是一份2021年全国中考数学真题分类汇编:反比例函数(无答案),共22页。