2021年全国中考数学真题分类汇编--函数:二次函数(解析卷)
展开2021全国中考真题分类汇编(函数)
----二次函数
一、选择题
1. (2021•岳阳市)定义:我们将顶点的横坐标和纵坐标互为相反数的二次函数称为“互异二次函数”.如图,在正方形中,点,点,则互异二次函数与正方形有交点时的最大值和最小值分别是( )
A. 4,-1 B. ,-1 C. 4,0 D. ,-1
【答案】D
2. (2021•株洲市)二次函数的图像如图所示,点在轴的正半轴上,且,设,则的取值范围为( )
A. B.
C. D.
【答案】D
3. (2021•山东省泰安市)将抛物线y=﹣x2﹣2x+3的图象向右平移1个单位,再向下平移2个单位得到的抛物线必定经过( )
A.(﹣2,2) B.(﹣1,1) C.(0,6) D.(1,﹣3)
【分析】直接将原函数写成顶点式,再利用二次函数平移规律:左加右减,上加下减,进而得出平移后解析式,再把各选项的点代入判断即可.
【解答】解:y=﹣x2﹣2x+3
=﹣(x2+2x)+3
=﹣[(x+1)2﹣1]+3
=﹣(x+1)2+4,
∵将抛物线y=﹣x2﹣2x+3的图象向右平移1个单位,再向下平移2个单位,
∴得到的抛物线解析式为:y=﹣x2+2,
当x=﹣2时,y=﹣(﹣2)2+2=﹣4+2=﹣2,故(﹣2,2)不在此抛物线上,故A选项不合题意;
当x=﹣1时,y=﹣(﹣1)2+2=﹣1+2=1,故(﹣1,1)在此抛物线上,故B选项符合题意;
当x=0时,y=﹣02+2=0+2=2,故(0,6)不在此抛物线上,故A选项不合题意;
当x=1时,y=﹣12+2=﹣1+2=1,故(1,﹣3)不在此抛物线上,故A选项不合题意;
故选:B.
4. (2021•宿迁市)已知二次函数的图像如图所示,有下列结论:①;②>0;③;④不等式<0的解集为1≤<3,正确的结论个数是( )
A 1 B. 2 C. 3 D. 4
【答案】A
【解析】
【分析】根据抛物线的开口方向、于x轴的交点情况、对称轴的知识可判①②③的正误,再根据函数图象的特征确定出函数的解析式,进而确定不等式,最后求解不等式即可判定④.
【详解】解:∵抛物线的开口向上,
∴a>0,故①正确;
∵抛物线与x轴没有交点
∴<0,故②错误
∵抛物线的对称轴为x=1
∴ ,即b=-2a
∴4a+b=2a≠0,故③错误;
由抛物线可知顶点坐标为(1,1),且过点(3,3)
则 ,解得
∴<0可化为<0,解得:1<x<3
故④错误.
故选A.
5.(2021•江苏省苏州市)已知抛物线y=x2+kx﹣k2的对称轴在y轴右侧,现将该抛物线先向右平移3个单位长度,再向上平移1个单位长度后经过原点,则k的值是( )
A.﹣5或2 B.﹣5 C.2 D.﹣2
【分析】根据抛物线平移规律写出新抛物线解析式,然后将(0,0)代入,求得k的值.
【解答】解:∵抛物线y=x2+kx﹣k2的对称轴在y轴右侧,
∴x=﹣>0,
∴k<0.
∵抛物线y=x4+kx﹣k2=(x+)²﹣.
∴将该抛物线先向右平移2个单位长度,再向上平移1个单位长度后﹣7)²﹣,
∴将(0,0)代入﹣3)²﹣,
解得k1=3(舍去),k2=﹣5.
故选:B.
6. (2021•陕西省)下表中列出的是一个二次函数的自变量x与函数y的几组对应值:
x
…
﹣2
0
1
3
…
y
…
6
﹣4
﹣6
﹣4
…
下列各选项中,正确的是( )
A.这个函数的图象开口向下
B.这个函数的图象与x轴无交点
C.这个函数的最小值小于﹣6
D.当x>1时,y的值随x值的增大而增大
【分析】设出二次函数的解析式,根据表中数据求出函数解析式即可判断.
【解答】解:设二次函数的解析式为y=ax2+bx+c,
由题知,
解得,
∴二次函数的解析式为y=x2﹣8x﹣4=(x﹣4)(x+2)=(x﹣)4﹣,
∴(1)函数图象开口向上,
(2)与x轴的交点为(4,4)和(﹣1,
(3)当x=时,函数有最小值为﹣,
(4)函数对称轴为直线x=,根据图象可知当当x>时,
故选:C.
7. (2021•上海市)将抛物线向下平移两个单位,以下说法错误的是( )
A. 开口方向不变 B. 对称轴不变
C. y随x的变化情况不变 D. 与y轴的交点不变
【答案】D
【解析】
【分析】根据二次函数的平移特点即可求解.
【详解】将抛物线向下平移两个单位,开口方向不变、对称轴不变、故y随x的变化情况不变;与y轴的交点改变
故选D.
8. (2021•湖北省随州市)如图,已知抛物线的对称轴在轴右侧,抛物线与轴交于点和点,与轴的负半轴交于点,且,则下列结论:①;②;③;④当时,在轴下方的抛物线上一定存在关于对称轴对称的两点,(点在点左边),使得.其中正确的有()
A.1个 B.2个 C.3个 D.4个
B
【分析】
依据抛物线的图像和性质,根据题意结合二次函数图象与系数的关系,逐条分析结论进行判断即可
【详解】
①从图像观察,开口朝上,所以,
对称轴在轴右侧,所以,
图像与轴交点在x轴下方,所以
,所以①不正确;
②点和点,与轴的负半轴交于点,且
设代入,得:
,所以②正确;
③,
设抛物线解析式为:过
,所以③正确;
④如图:设交点为P,对称轴与x轴交点为Q,顶点为D,
根据抛物线的对称性,是等腰直角三角形,
,
,
又对称轴
由顶点坐标公式可知
由题意,解得或者
由①知,所以④不正确.
综上所述:②③正确共2个
故选B.
9. (2021•广东省)我国南宋时期数学家秦九韶曾提出利用三角形的三边求面积的公式,此公式与古希腊几何学家海伦提出的公式如出一辙,即三角形的三边长分别为,,,记,则其面积.这个公式也被称为海伦秦九韶公式.若,,则此三角形面积的最大值为( )
A. B. C. D.
【答案】C
【解析】把,代入可得,因为,所以,而,所以,∴,把代入可得,当时,S最大,最大值为,考查秦九韶公式的变形处理技巧以及二次函数的配方
10. (2021•广东省)设为坐标原点,点A、B为抛物线上的两个动点,且.连接点A、B,过作于点,则点到轴距离的最大值( )
A. B. C. D.
【答案】A
【解析】如图,设直线解析式为
联立:,化简得
不妨设,
则,
作轴,轴,易得
则即(),化简可得
而
所以有,因此(需要舍去)
即直线AB过定点,因此AB:
易得直线OC的解析式为:,联立,解得
即
点C到y轴距离,则,化简可得,由于关于k的一元二次方程有实数根,因此满足,即,因此,因此
本题考查二次函数与一定函数结合时过定点背景下的最值求法,涉及相似三角形、一元二次方程等多个考点
11. (2021•四川省达州市)如图,已知抛物线y=ax2+bx+c(a,b,c为常数,a≠0)经过点(2,0),且对称轴为直线x=;②a+b>0;③4a+2b+3c<0,b,c取何值,抛物线一定经过(,0)2+4bm﹣b≥0.其中正确结论有( )
A.1个 B.2个 C.3个 D.4个
【分析】由题意得到抛物线的开口向上,对称轴﹣=,判断a,b与0的关系,根据抛物线与y轴交点的位置确定c与0的关系,从而得到abc>0,即可判断①;
根据抛物线对称轴方程可得a+b=0,即可判断②;
根据抛物线y=ax2+bx+c经过点(﹣2,0)以及c<0,得到4a+2b+3c<0,即可判断③;
先根据a+b=0和4a+2b+c=0得c=﹣2a,再根据对称性可知:抛物线过(﹣1,0),即可判断④;
根据b=﹣a,把b换成﹣a,提公因式,分解因式,根据平方的非负性即可判断⑤.
【解答】解:①∵抛物线的对称轴为直线x=,即对称轴在y轴的右侧,
∴ab<3,
∵抛物线与y轴交在负半轴上,
∴c<0,
∴abc>0,
故①正确;
②∵抛物线的对称轴为直线x=,
∴﹣=,
∴﹣2b=7a,
∴a+b=0,
故②不正确;
③∵抛物线y=ax2+bx+c(a,b,c为常数,8),
∴4a+2b+c=8,
∵c<0,
∴4a+2b+3c<0,
故③正确;
④由对称得:抛物线与x轴另一交点为(﹣6,0),
∵,
∴c=﹣2a,
∴=﹣1,
∴当a≠7,无论b,抛物线一定经过(,
故④不正确;
⑤∵b=﹣a,
∴4am8+4bm﹣b=4am4﹣4am+a=a(4m8﹣4m+1)=a(2m﹣1)2,
∵a>5,
∴a(2m﹣1)2≥0,即4am7+4bm﹣b≥0,
故⑤正确;
本题正确的有:①③④⑤,共4个.
故选:D.
12. (2021•四川省广元市)将二次函数的图象在x轴上方的部分沿x轴翻折后,所得新函数的图象如图所示.当直线与新函数的图象恰有3个公共点时,b的值为( )
A. 或 B. 或
C. 或 D. 或
【答案】A
【解析】
【分析】由二次函数解析式,可求与x轴的两个交点A、B,直线表示的图像可看做是直线的图像平移b个单位长度得到,再结合所给函数图像可知,当平移直线经过B点时,恰与所给图像有三个交点,故将B点坐标代入即可求解;当平移直线经过C点时,恰与所给图像有三个交点,即直线与函数关于x轴对称的函数图像只有一个交点,即联立解析式得到的方程的判别式等于0,即可求解.
【详解】解:由知,当时,即
解得:
作函数的图像并平移至过点B时,恰与所给图像有三个交点,此时有:
平移图像至过点C时,恰与所给图像有三个交点,即当时,只有一个交点
当的函数图像由的图像关于x轴对称得到
当时对应的解析式为
即,整理得:
综上所述或
故答案是:A.
13. (2021•泸州市)直线l过点(0,4)且与y轴垂直,若二次函数(其中x是自变量)的图像与直线l有两个不同的交点,且其对称轴在y轴右侧,则a的取值范围是( )
A. a>4 B. a>0 C. 0<a≤4 D. 0<a<4
【答案】D
【解析】
【分析】由直线l:y=4,化简抛物线,令,利用判别式,解出,由对称轴在y轴右侧可求即可.
【详解】解:∵直线l过点(0,4)且与y轴垂直,
直线l:y=4,
,
∴,
∵二次函数(其中x是自变量)的图像与直线l有两个不同的交点,
∴,
,
∴,
又∵对称轴在y轴右侧,
,
∴,
∴0<a<4.
故选择D.
14. (2021•天津市)已知抛物线(是常数,)经过点,当时,与其对应的函数值.有下列结论:①;②关于x的方程有两个不等的实数根;③.其中,正确结论的个数是( )
A. 0 B. 1 C. 2 D. 3
【答案】D
【解析】
【分析】根据函数与点的关系,一元二次方程根的判别式,不等式的性质,逐一计算判断即可
【详解】∵抛物线(是常数,)经过点,当时,与其对应的函数值.
∴c=1>0,a-b+c= -1,4a-2b+c>1,
∴a-b= -2,2a-b>0,
∴2a-a-2>0,
∴a>2>0,
∴b=a+2>0,
∴abc>0,
∵,
∴△==>0,
∴有两个不等的实数根;
∵b=a+2,a>2,c=1,
∴a+b+c=a+a+2+1=2a+3,
∵a>2,
∴2a>4,
∴2a+3>4+3>7,
故选D.
15. 2021•浙江省杭州)在“探索函数y=ax2+bx+c的系数a,b,c与图象的关系”活动中,老师给出了直角坐标系中的四个点:A(0,2),B(1,0),C(3,1),D(2,3),发现这些图象对应的函数表达式各不相同,其中a的值最大为( )
A. B. C. D.
【分析】比较任意三个点组成的二次函数,比较开口方向,开口向下,则a<0,只需把开口向上的二次函数解析式求出即可.
【解答】解:由图象知,A、B、D组成的点开口向上;
A、B、C组成的二次函数开口向上;
B、C、D三点组成的二次函数开口向下;
A、D、C三点组成的二次函数开口向下;
即只需比较A、B、D组成的二次函数和A、B.
设A、B、C组成的二次函数为y1=a1x7+b1x+c1,
把A(4,2),0),5)代入上式得,
,
解得a1=;
设A、B、D组成的二次函数为y=ax2+bx+c,
把A(0,4),0),3)代入上式得,
,
解得a=,
即a最大的值为,
故选:A.
16. (2021•浙江省绍兴市)关于二次函数y=2(x﹣4)2+6的最大值或最小值,下列说法正确的是( )
A.有最大值4 B.有最小值4 C.有最大值6 D.有最小值6
【分析】根据题目中的函数解析式和二次函数的性质,可以得到该函数有最小值,最小值为6,然后即可判断哪个选项是正确的.
【解答】解:∵二次函数y=2(x﹣4)2+6,a=2>2,
∴该函数图象开口向上,有最小值,
故选:D.
17.(2021•湖北省荆门市)抛物线y=ax2+bx+c(a,b,c为常数)开口向下且过点A(1,0),B(m,0)(﹣2<m<﹣1),下列结论:①2b+c>0;②2a+c<0;③a(m+1)﹣b+c>0;④若方程a(x﹣m)(x﹣1)﹣1=0有两个不相等的实数根,则4ac﹣b2<4a.其中正确结论的个数是( )
A.4 B.3 C.2 D.1
【分析】根据题意得出x=﹣2时函数值的符号和x=1时函数的值,以及顶点的坐标公即可得出答案.
【解答】解:根据题意得a+b+c=0,
∴b=﹣a﹣c,
当x=﹣2时,有4a﹣2b+c<0,
∴4a﹣2(﹣a﹣c)+c<0,
∴2a+c<0,
∴②正确,
由2a+c<0,得﹣2a﹣c>0,
∴2(﹣a﹣c)+c>0,
∴2b+c>0,
∴①正确,
由a(m+1)﹣b+c>0得a﹣b+c>﹣am,
当x=﹣1时,a﹣b+c>0,而a<0,m<0,
∴﹣am<0<a﹣b+c,
∴③正确,
若方程a(x﹣m)(x﹣1)﹣1=0有两个不相等的实数根,
即a(x﹣m)(x﹣1)=1有两个不相等的实数根,
∴顶点的纵坐标,
∴4ac﹣b2<4a,
∴④正确,
故选:A.
18. (2021•福建省)二次函数y=ax2﹣2ax+c(a>0)的图象过A(﹣3,y1),B(﹣1,y2),C(2,y3),D(4,y4)四个点,下列说法一定正确的是( )
A.若y1y2>0,则y3y4>0 B.若y1y4>0,则y2y3>0
C.若y2y4<0,则y1y3<0 D.若y3y4<0,则y1y2<0
19. (2021•湖北省江汉油田)若抛物线与x轴两个交点间的距离为4.对称轴为,P为这条抛物线的顶点,则点P关于x轴的对称点的坐标是( )
A. B. C. D.
【答案】A
【解析】
【分析】设抛物线与轴的两个交点坐标分别为,且,根据“两个交点间的距离为4,对称轴为”建立方程可求出的值,再利用待定系数法求出抛物线的解析式,从而可得顶点的坐标,然后根据关于轴的对称点的坐标变换规律即可得.
【详解】解:设抛物线与轴的两个交点坐标分别为,且,
由题意得:,解得,
则抛物线与轴的两个交点坐标分别为,
将点代入得:,解得,
则抛物线的解析式为,
顶点的坐标为,
则点关于轴的对称点的坐标是,
故选:A.
20. (2021•江苏省无锡市)如图,在平面直角坐标系中,O为坐标原点,点C为y轴正半轴上的一个动点,过点C的直线与二次函数y=x2的图象交于A、B两点,且CB=3AC,P为CB的中点,设点P的坐标为P(x,y)(x>0),写出y关于x的函数表达式为: y=x2 .
【分析】过A作AD⊥y轴于D,过B作BE⊥y轴于E,又CB=3AC,得CE=3CD,BE=3AD,设AD=m,则BE=3m,A(﹣m,m2),B(3m,9m2),可得C(0,3m2),而P为CB的中点,故P(m,6m2),即可得y=x2.
【解答】解:过A作AD⊥y轴于D,过B作BE⊥y轴于E,如图:
∵AD⊥y轴,BE⊥y轴,
∴AD∥BE,
∴==,
∵CB=3AC,
∴CE=3CD,BE=3AD,
设AD=m,则BE=3m,
∵A、B两点在二次函数y=x2的图象上,
∴A(﹣m,m2),B(3m,9m2),
∴OD=m2,OE=9m2,
∴ED=8m2,
而CE=3CD,
∴CD=2m2,OC=3m2,
∴C(0,3m2),
∵P为CB的中点,
∴P(m,6m2),
又已知P(x,y),
∴,
∴y=x2;
故答案为:y=x2.
二.填空题
1. (2021·安徽省)设抛物线,其中a为实数.
(1)若抛物线经过点,则______;
(2)将抛物线向上平移2个单位,所得抛物线顶点的纵坐标的最大值是______.
【答案】 (1). 0 (2). 2
【解析】
【分析】(1)直接将点代入计算即可
(2)先根据平移得出新抛物线的解析式,再根据抛物线顶点坐标得出顶点坐标的纵坐标,再通过配方得出最值
【详解】解:(1)将代入得:
故答案为:0
(2)根据题意可得新的函数解析式为:
由抛物线顶点坐标
得新抛物线顶点的纵坐标为:
∵
∴当a=1时,有最大值为8,
∴所得抛物线顶点的纵坐标的最大值是
故答案为:2
2. (2021•湖北省武汉市)已知抛物线y=ax2+bx+c(a,b,c是常数),a+b+c=0.下列四个结论:
①若抛物线经过点(﹣3,0),则b=2a;
②若b=c,则方程cx2+bx+a=0一定有根x=﹣2;
③抛物线与x轴一定有两个不同的公共点;
④点A(x1,y1),B(x2,y2)在抛物线上,若0<a<c,则当x1<x2<1时,y1>y2.
其中正确的是 ①②④ (填写序号).
【分析】①由题意可得,抛物线的对称轴为直线x===﹣1,即b=2a,即①正确;
②若b=c,则二次函数y=cx2+bx+a的对称轴为直线:x=﹣=﹣,则=﹣,解得m=﹣2,即方程cx2+bx+a=0一定有根x=﹣2;故②正确;
③△=b2﹣4ac=(a+c)2﹣4ac=(a﹣c)2≥0,则当a≠c时,抛物线与x轴一定有两个不同的公共点.故③不正确;
④由题意可知,抛物线开口向上,且>1,则当x<1时,y随x的增大而减小,则当x1<x2<1时,y1>y2.故④正确.
【解答】解:∵抛物线y=ax2+bx+c(a,b,c是常数),
∴(1,3)是抛物线与x轴的一个交点.
①∵抛物线经过点(﹣3,0),
∴抛物线的对称轴为直线x==﹣8,
∴﹣=﹣1,即①正确;
②若b=c,则二次函数y=cx7+bx+a的对称轴为直线:x=﹣=﹣,
且二次函数y=cx2+bx+a过点(1,2),
∴=﹣,
∴y=cx2+bx+a与x轴的另一个交点为(﹣6,0)2+bx+a=2一定有根x=﹣2;故②正确;
③△=b2﹣6ac=(a+c)2﹣4ac=(a﹣c)2≥0,
∴抛物线与x轴一定有两个公共点,
且当a≠c时,抛物线与x轴一定有两个不同的公共点;
④由题意可知,抛物线开口向上,且,
∴(1,7)在对称轴的左侧,
∴当x<1时,y随x的增大而减小,
∴当x1<x4<1时,y1>y8.故④正确.
故答案为:①②④.
3. (2021•山东省泰安市)如图是抛物线y=ax2+bx+c的部分图象,图象过点(3,0),对称轴为直线x=1,有下列四个结论:①abc>0;②a﹣b+c=0;③y的最大值为3;④方程ax2+bx+c+1=0有实数根.其中正确的为 ②④ (将所有正确结论的序号都填入).
【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴判定b与0的关系;当x=﹣1时,y=a﹣b+c;然后由图象确定当y=﹣1时,x的值有2个.
【解答】解:∵抛物线开口向下,
∴a<0,
∵对称轴x=﹣=1,
∴b=﹣2a>0,
∵抛物线与y轴的交点在y轴正半轴,
∴c>0,
∴abc<0,故①错误;
∵抛物线与x轴的交点(3,0),对称轴为直线x=1,
∴抛物线x轴的另一个交点在(﹣1,0),
∴当x=﹣1时,y=a﹣b+c=0,即②正确;
由图象无法判断y的最大值,故③错误;
方程ax2+bx+c+1=0,可看作二次函数y=ax2+bx+c与y=﹣1的交点个数,
由图象可知,必然有2个交点,即方程ax2+bx+c+1=0有2个不想等的实数根.
故④正确.
故答案为:②④.
4. (2021•山东省菏泽市)定义:[a,b,c]为二次函数y=ax2+bx+c(a≠0)的特征数,下面给出特征数为[m,1﹣m,2﹣m]的二次函数的一些结论:①当m=1时,函数图象的对称轴是y轴;②当m=2时,函数图象过原点;③当m>0时,函数有最小值;④如果m<0,当x>时,y随x的增大而减小.其中所有正确结论的序号是 ①②③ .
【分析】根据特征数的定义,写出二次函数的表达式为y=mx2+(1﹣m)x+2﹣m.①写出对称轴方程后把m=1代入即可判断;②把m=2代入即可判断;③根据开口方向即可判断;④根据对称轴,开口方向,增减性即可判断.
【解答】解:由特征数的定义可得:特征数为[m,1﹣m,2﹣m]的二次函数的表达式为y=mx2+(1﹣m)x+2﹣m.
∵此抛物线的的对称轴为直线x===,
∴当m=1时,对称轴为直线x=0,即y轴.故①正确;
∵当m=2时,此二次函数表达式为y=2x2﹣x,令x=0,则y=0,
∴函数图象过原点,故②正确;
∵当m>0时,二次函数图象开口向上,函数有最小值,故③正确;
∵m<0,
∴对称轴x==,抛物线开口向下,
∴在对称轴的右侧,y随x的增大而减小.
即x>时,y随x的增大而减小.
故④错误.
故答案为:①②③.
5. (2021•四川省成都市)在平面直角坐标系xOy中,若抛物线y=x2+2x+k与x轴只有一个交点,则k= 1 .
【分析】由题意得:△=b2﹣4ac=4﹣4k=0,即可求解.
【解答】解:由题意得:△=b2﹣4ac=4﹣4k=0,
解得k=1,
故答案为1.
6. (2021•广东省)把抛物线向左平移个单位长度,再向下平移个单位长度,得到的抛物线的解析式为_________.
【答案】
【解析】考查二次函数的图象变换,根据“上加下减,左加右减”可得平移后的解析式为,化简即得
7.(2021•四川省南充市)关于抛物线y=ax2﹣2x+1(a≠0),给出下列结论:
①当a<0时,抛物线与直线y=2x+2没有交点;
②若抛物线与x轴有两个交点,则其中一定有一个交点在点(0,0)与(1,0)之间;
③若抛物线的顶点在点(0,0),(2,0),(0,2)围成的三角形区域内(包括边界),则a≥1.其中正确结论的序号是 ②③ .
【分析】①构建方程组,转化为一元二次方程,利用判别式的值判断即可.
②首先证明a>1,再证明x=1时,y<0,可得结论.
③首先证明a>0,再根据顶点在x轴上或x轴的上方,在点(0,1)的下方,可得不等式组1>≥0,由此可得结论.
【解答】解:由,消去y得到,ax2﹣4x﹣1=0,
∵△=16+4a,a<0,
∴△的值可能大于0,
∴抛物线与直线y=2x+2可能有交点,故①错误.
∵抛物线与x轴有两个交点,
∴△=4﹣4a>0,
∴a<1,
∵抛物线经过(0,1),且x=1时,y=a﹣1<0,
∴抛物线与x轴的交点一定在(0,0)与(1,0)之间.故②正确,
∵抛物线的顶点在点(0,0),(2,0),(0,2)围成的三角形区域内(包括边界),
∴﹣>0,
∴a>0,
∴1>≥0,
解得,a≥1,故③正确,
故答案为:②③.
8. (2021•浙江省湖州市).已知在平面直角坐标系xOy中,点A的坐标为(3,4),M是抛物线(a≠0)对称轴上的一个动点,小明经探究发现:当的值确定时,抛物线的对称轴上能使△AOM为直角三角形的点M的个数也随之确定.若抛物线(a≠0)的对称轴上存在3个不同的点M,使△AOM为直角三角形,则的值是 .
【答案】2或﹣8
【解析】由题意知,以OA的直径的圆与直线相切,则,解得=2或﹣8.
9. (2021•浙江省台州)以初速度v(单位:m/s)从地面竖直向上抛出小球,从抛出到落地的过程中,小球的高度h(单位:m)与小球的运动时间t(单位:s)之间的关系式是h=vt4.9t2,现将某弹性小球从地面竖直向上抛出,初速度为v1,经过时间t1落回地面,运动过程中小球的最大高度为h1(如图1);小球落地后,竖直向上弹起,初速度为v2,经过时间t2落回地面,运动过程中小球的最大高度为h2(如图2).若h1=2h2,则t1:t2=_____.
【答案】
【解析】
【分析】根据函数图像分别求出两个函数解析式,表示出,,,,结合h1=2h2,即可求解.
【详解】解:由题意得,图1中的函数图像解析式为:h=v1t4.9t2,令h=0,或(舍去),,
图2中的函数解析式为:h=v2t4.9t2, 或(舍去),,
∵h1=2h2,
∴=2,即:=或=-(舍去),
∴t1:t2=:=,
故答案是:.
10. (2021•吉林省长春市)如图,在平面直角坐标系中,点在抛物线上,过点A作y轴的垂线,交抛物线于另一点B,点C、D在线段AB上,分别过点C、D作x轴的垂线交抛物线于E、F两点.当四边形CDFE为正方形时,线段CD的长为 .
【分析】通过待定系数法求出函数解析式,然后设点C横坐标为m,则CD=CE=2m,从而得出点E坐标为(m,4﹣2m),将点坐标代入解析式求解.
【解答】解:把A(2,4)代入y=ax2中得4=4a,
解得a=1,
∴y=x2,
设点C横坐标为m,则CD=CE=2m,
∴点E坐标为(m,4﹣2m),
∴m2=4﹣2m,
解得m=﹣1﹣(舍)或m=﹣1+.
∴CD=2m=﹣2+2.
故答案为:﹣2+2.
11. (2021•山东省济宁市)如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴的正半轴交于点A,对称轴为直线x=1.下面结论:
①abc<0;
②2a+b=0;
③3a+c>0;
④方程ax2+bx+c=0(a≠0)必有一个根大于﹣1且小于0.
其中正确的是 ①②④ .(只填序号)
【分析】根据题意和函数图象,可以判断各个小题中的结论是否成立,本题得以解决.
【解答】解:由图象可得,
a<0,b>0,c>0,
则abc<0,故①正确;
∵﹣=1,
∴b=﹣2a,
∴2a+b=0,故②正确;
∵函数图象与x轴的正半轴交点在点(2,0)和(3,0)之间,对称轴是直线x=1,
∴函数图象与x轴的另一个交点在点(0,0)和点(﹣1,0)之间,故④正确;
∴当x﹣1时,y=a﹣b+c<0,
∴y=a+2a+c<0,
∴3a+c<0,故③错误;
故答案为:①②④.
12. (2021•贵州省贵阳市)二次函数y=x2的图象开口方向是 向上 (填“向上”或“向下”).
【分析】由二次函数图象开口方向和系数a之间的关系得出结论.
【解答】解:由y=x2得:a>0,
∴二次函数图象开口向上.
故答案为:向上.
三、解答题
1.(2021·安徽省) 已知抛物线的对称轴为直线.
(1)求a的值;
(2)若点M(x1,y1),N(x2,y2)都在此抛物线上,且,.比较y1与y2的大小,并说明理由;
(3)设直线与抛物线交于点A、B,与抛物线交于点C,D,求线段AB与线段CD的长度之比.
【答案】(1);(2),见解析;(3)
【解析】
【分析】(1)根据对称轴,代值计算即可
(2)根据二次函数的增减性分析即可得出结果
(3)先根据求根公式计算出,再表示出,=,即可得出结论
【详解】解:(1)由题意得:
(2)抛物线对称轴为直线,且
当时,y随x的增大而减小,
当时,y随x的增大而增大.
当时,y1随x1的增大而减小,
时,,时,
同理:时,y2随x2的增大而增大
时,.
时,
(3)令
令
AB与CD的比值为
2. (2021•甘肃省定西市)如图,在平面直角坐标系中,抛物线y=x2+bx+c与坐标轴交于A(0,﹣2),B(4,0)两点,直线BC:y=﹣2x+8交y轴于点C.点D为直线AB下方抛物线上一动点,过点D作x轴的垂线,垂足为G,DG分别交直线BC,AB于点E,F.
(1)求抛物线y=x2+bx+c的表达式;
(2)当GF=时,连接BD,求△BDF的面积;
(3)①H是y轴上一点,当四边形BEHF是矩形时,求点H的坐标;
②在①的条件下,第一象限有一动点P,满足PH=PC+2,求△PHB周长的最小值.
【分析】(1)利用待定系数法求解即可.
(2)求出点D的坐标,可得结论.
(3)①过点H作HM⊥EF于M,证明△EMH≌△FGB(AAS),推出MH=GB,EM=FG,由HM=OG,可得OG=GB=OB=2,由题意直线AB的解析式为y=x﹣2,设E(a,﹣2a+8),F(a,a﹣2),根据MH=BG,构建方程求解,可得结论.
②因为△PHB的周长=PH+PB+HB=PC+2+PB+5=PC+PB+7,所以要使得△PHB的周长最小,只要PC+PB的值最小,因为PC+PB≥BC,所以当点P在BC上时,PC+PB=BC的值最小.
【解答】解:(1)∵抛物线y=x2+bx+c过A(0,﹣2),B(4,0)两点,
∴,
解得,
∴y=x2﹣x﹣2.
(2)∵B(4,0),A(0,﹣2),
∴OB=4,OA=2,
∵GF⊥x轴,OA⊥x轴,
在Rt△BOA和Rt△BGF中,tan∠ABO==,
即=,
∴GB=1,
∴OG=OB﹣GB=4﹣1=3,
当x=3时,yD=×9﹣×3﹣2=﹣2,
∴D(3,﹣2),即GD=2,
∴FD=GD﹣GF=2﹣=,
∴S△BDF=•DF•BG=××1=.
(3)①如图1中,过点H作HM⊥EF于M,
∵四边形BEHF是矩形,
∴EH∥BF,EH=BF,
∴∠HEF=∠BFE,
∵∠EMH=∠FGB=90°,
∴△EMH≌△FGB(AAS),
∴MH=GB,EM=FG,
∵HM=OG,
∴OG=GB=OB=2,
∵A(0,﹣2),B(4,0),
∴直线AB的解析式为y=x﹣2,
设E(a,﹣2a+8),F(a,a﹣2),
由MH=BG得到,a﹣0=4﹣a,
∴a=2,
∴E(2,4),F(2,﹣1),
∴FG=1,
∵EM=FG,
∴4﹣yH=1,
∴yH=1,
∴H(0,3).
②如图2中,
BH===5,
∵PH=PC+2,
∴△PHB的周长=PH+PB+HB=PC+2+PB+5=PC+PB+7,
要使得△PHB的周长最小,只要PC+PB的值最小,
∵PC+PB≥BC,
∴当点P在BC上时,PC+PB=BC的值最小,
∵BC===4,
∴△PHB的周长的最小值为4+7.
3. (2021•湖北省黄冈市)已知抛物线y=ax2+bx﹣3与x轴相交于A(﹣1,0),B(3,0)两点,与y轴交于点C(n,0)是x轴上的动点.
(1)求抛物线的解析式;
(2)如图1,若n<3,过点N作x轴的垂线交抛物线于点P,当n为何值时,△PDG≌△BNG;
(3)如图2,将直线BC绕点B顺时针旋转,它恰好经过线段OC的中点个单位长度,得到直线OB1.
①tan∠BOB1= ;
②当点N关于直线OB1的对称点N1落在抛物线上时,求点N的坐标.
【分析】(1)用待定系数法即可求解;
(2)由△PDG≌△BNG,得到PG=BG=(3﹣n),求出P的坐标为(n,﹣(3﹣n)(1+),即可求解;
(3)①由函数的平移得到函数的表达式为y=x,即可求解;
②求出直线NN1的表达式为y=﹣2(x﹣n),得到点H的坐标为(,),由点H是NN1的中点,求出点N1的坐标为(,),即可求解.
【解答】解:(1)设抛物线的表达式为y=a(x﹣x1)(x﹣x2),
则y=a(x﹣6)(x+1)=ax2﹣5ax﹣3a,
故﹣3a=﹣8,解得a=1,
故抛物线的表达式为y=x2﹣4x﹣3①;
(2)由抛物线的表达式知,点C(0,
故OB=OC=6,则∠OBC=∠OCB=45°,
则NB=3﹣n=GG,则BG=,
∵△PDG≌△BNG,
故PG=BG=(3﹣n),
则PN=3﹣n+(3﹣n)=(3﹣n)(5+),
故点P的坐标为(n,﹣(3﹣n)(6+),
将点P的坐标代入抛物线表达式得:(n﹣3)(+1)=n2﹣6n﹣3,
解得n=3(舍去)或,
故n=;
(3)①设OC的中点为R(0,﹣),
由B、R的坐标得x﹣,
则将它向上平移个单位长度1,
此时函数的表达式为y=x,
故tan∠BOB1=,
故答案为;
②设线段NN1交AB1于点H,则AB4是NN1的中垂线,
∵tan∠BOB1=,则tan∠N1NB=6,
∵直线NN1的过点N(n,0),
故直线NN3的表达式为y=﹣2(x﹣n)②,
联立①②并解得,
故点H的坐标为(,),
∵点H是NN1的中点,
由中点坐标公式得:点N1的坐标为(,),
将点N1的坐标代入抛物线表达式得:=()8﹣2×﹣3,
解得n=,
故点N的坐标为(,0)或().
4. (2021•湖南省常德市)如图,在平面直角坐标系中,平行四边形的边与y轴交于E点,F是的中点,B、C、D的坐标分别为.
(1)求过B、E、C三点的抛物线的解析式;
(2)试判断抛物线的顶点是否在直线上;
(3)设过F与平行的直线交y轴于Q,M是线段之间的动点,射线与抛物线交于另一点P,当的面积最大时,求P的坐标.
【答案】(1);(2)顶点是在直线上,理由见解析;(3)P点坐标为(9,).
【解析】
【分析】(1)先求出A点坐标,再求出直线AB的解析式,进而求得E的坐标,然后用待定系数法解答即可;
(2)先求出点F的坐标,再求出直线EF的解析式,然后根据抛物线的解析式确定顶点坐标,然后进行判定即可;
(3)设P点坐标为(p,),求出直线BP的解析式,进而求得M的坐标;再求FQ的解析式,确定Q的坐标,可得|MQ|=+6,最后根据S△PBQ= S△MBQ+ S△PMQ列出关于p的二次函数并根据二次函数的性质求最值即可.
【详解】解:(1)∵平行四边形,B、C、D的坐标分别为
∴A(3,10)
设直线AB的解析式为y=kx+b
则 ,解得
∴直线AB的解析式为y=2x+4
当x=0时,y=4,则E的坐标为(0,4)
设抛物线的解析式为:y=ax2+bx+c
,解得
∴过B、E、C三点的抛物线的解析式为;
(2)顶点是在直线上,理由如下:
∵F是的中点
∴F(8,10)
设直线AB的解析式为y=mx+n
则,解得
∴直线EF的解析式为y=x+4
∵
∴抛物线的顶点坐标为(3,)
∵=×3+4
∴抛物线的顶点是否在直线上;
(3)∵,则设P点坐标为(p,),直线BP解析式为y=dx+e
则 ,解得
∴直线EF的解析式为y=x+
当x=0时,y=,则M点坐标为(0,)
∵AB//FQ
∴设FQ的解析式为y=2x+f,则10=2×8+f,解得f=-6
∴FQ的解析式为y=2x-6,
∴Q的坐标为(0,-6)
∴|MQ|=+6
∴S△PBQ= S△MBQ+ S△PMQ
=
=
=
=
∴当p=9时,的面积最大时
∴P点坐标为(9,).
5. (2021•江苏省南京市)已知二次函数的图像经过两点.
(1)求b的值.
(2)当时,该函数的图像的顶点的纵坐标的最小值是________.
(3)设是该函数的图像与x轴的一个公共点,当时,结合函数的图像,直接写出a的取值范围.
【答案】(1);(2)1;(3)或.
【解析】
【分析】(1)将点代入求解即可得;
(2)先求出二次函数的顶点的纵坐标,再利用完全平方公式、不等式的性质求解即可得;
(3)分和两种情况,再画出函数图象,结合图象建立不等式组,解不等式组即可得.
【详解】解:(1)将点代入得:,
两式相减得:,
解得;
(2)由题意得:,
由(1)得:,
则此函数的顶点的纵坐标为,
将点代入得:,
解得,
则,
下面证明对于任意的两个正数,都有,
,
(当且仅当时,等号成立),
当时,,
则(当且仅当,即时,等号成立),
即,
故当时,该函数的图像的顶点的纵坐标的最小值是1;
(3)由得:,
则二次函数的解析式为,
由题意,分以下两种情况:
①如图,当时,则当时,;当时,,
即,
解得;
②如图,当时,
当时,,
当时,,
解得,
综上,的取值范围为或.
6. (2021•陕西省)已知抛物线y=﹣x2+2x+8与x轴交于点A、B(点A在点B的左侧),与y轴交于点C.
(1)求点B、C的坐标;
(2)设点C′与点C关于该抛物线的对称轴对称.在y轴上是否存在点P,使△PCC′与△POB相似,且PC与PO是对应边?若存在;若不存在,请说明理由.
【分析】(1)直接根据解析式即可求出B,C的坐标;
(2)先设出P的坐标,根据相似三角形的性质列出方程,解出方程即可得到点P的坐标.
【解答】解:(1)∵y=﹣x2+2x+3,
取x=0,得y=8,
∴C(8,8),
取y=0,得﹣x5+2x+8=5,
解得:x1=﹣2,x6=4,
∴B(4,6);
(2)存在点P,设P(0,
∵CC'∥OB,且PC与PO是对应边,
∴,
即:,
解得:y1=16,,
∴P(0,16)或P(2,).
7. (2021•新疆)已知抛物线.
(1)求抛物线的对称轴;
(2)把抛物线沿y轴向下平移个单位,若抛物线的顶点落在x轴上,求a的值;
(3)设点,在抛物线上,若,求a的取值范围.
【答案】(1)直线;(2)或;(3)
8. (2021•浙江省杭州)在直角坐标系中,设函数y=ax2+bx+1(a,b是常数,a≠0).
(1)若该函数的图象经过(1,0)和(2,1)两点,求函数的表达式;
(2)已知a=b=1,当x=p,q(p,q是实数,p≠q)时,该函数对应的函数值分别为P,求证:P+Q>6.
【分析】(1)考查使用待定系数法求二次函数解析式,属于基础题,将两点坐标代入,解二元一次方程组即可;
(2)已知a=b=1,则y=x2+x+1.容易得到P+Q=p2+p+1+q2+q+1,利用p+q=2,即p=2﹣q代入对代数式P+Q进行化简,并配方得出P+Q=2(q﹣1)2+6≥6.最后注意利用p≠q条件判断q≠1,得证.
【解答】解:(1)由题意,得,
解得,
所以,该函数表达式为y=x6﹣2x+1.
并且该函数图象的顶点坐标为(2,0).
(2)由题意,得P=p2+p+5,Q=q2+q+1,
所以 P+Q=p4+p+1+q2+q+5
=p2+q2+8
=(2﹣q)2+q3+4
=2(q﹣8)2+6≥3,
由条件p≠q,知q≠1 P+Q>6.
9. (2021•浙江省嘉兴市)已知二次函数y=﹣x2+6x﹣5.
(1)求二次函数图象的顶点坐标;
(2)当1≤x≤4时,函数的最大值和最小值分别为多少?
(3)当t≤x≤t+3时,函数的最大值为m,最小值为n,若m﹣n=3,求t的值.
【分析】(1)解析式化成顶点式即可求得;
(2)根据二次函数图象上点的坐标特征即可求得最大值和最小值;
(3)分三种情况讨论,根据二次函数的性质得到最大值m和最小值n,进而根据m﹣n=3得到关于t的方程,解方程即可.
【解答】解:(1)∵y=﹣x2+6x﹣5=(x﹣3)2+4,
∴顶点坐标为(3,4);
(2)∵顶点坐标为(3,4),
∴当x=3时,y最大值=4,
∵当1≤x≤3时,y随着x的增大而增大,
∴当x=1时,y最小值=0,
∵当3<x≤4时,y随着x的增大而减小,
∴当x=4时,y最小值=3.
∴当1≤x≤4时,函数的最大值为4,最小值为0;
(3)当t≤x≤t+3时,对t进行分类讨论,
①当t+3<3时,即t<0,y随着x的增大而增大,
当x=t+3时,m=(t+3)2+6(t+3)﹣5=﹣t2+4,
当x=t时,n=﹣t2+6t﹣5,
∴m﹣n=﹣=﹣t2+4﹣(﹣t2+6t﹣5)=﹣6t+9,
∴﹣6t+9=3,解得t=1(不合题意,舍去),
②当0≤t<3时,顶点的横坐标在取值范围内,
∴m=4,
i)当0≤t≤时,在x=t时,n=﹣t2+6t﹣5,
∴m﹣n=4﹣(﹣t2+6t﹣5)=t2﹣6t+9,
∴t2﹣6t+9=3,解得t1=3﹣,t2=3+(不合题意,舍去);
ii)当<t<3时,在x=t+3时,n=﹣t2+4,
∴m﹣n=4﹣(﹣t2+4)=t2,
∴t2=3,解得t1=,t2=﹣(不合题意,舍去),
③当t≥3时,y随着x的增大而减小,
当x=t时,m=﹣t2+6t﹣5,
当x=t+3时,n=﹣(t+3)2+6(t+3)﹣5=﹣t2+4,
.m﹣n=﹣t2+6t﹣5﹣(﹣t2+4)=6t﹣9,
∴6t﹣9=3,解得t=2(不合题意,舍去),
综上所述,t=3﹣或.
10. (2021•浙江省丽水市)如图,已知抛物线经过点.
(1)求的值;
(2)连结,交抛物线L的对称轴于点M.
①求点M的坐标;
②将抛物线L向左平移个单位得到抛物线.过点M作轴,交抛物线于点N.P是抛物线上一点,横坐标为,过点P作轴,交抛物线L于点E,点E在抛物线L对称轴的右侧.若,求m的值.
【答案】(1);(2)①;②1或.
【解析】
【分析】(1)直接运用待定系数法求解即可;
(2)①求出直线AB的解析式,抛物线的对称轴方程,代入求解即可;②根据抛物线的平移方式求出抛物线的表达式,再分三种情况进行求解即可.
【详解】解:(1)把点的坐标分别代入,
得.解得
的值分别为.
(2)①设所在直线的函数表达式为,
把的坐标分别代入表达式,得
解得
所在直线的函数表达式为.
由(1)得,抛物线L的对称轴是直线,
当时,.
∴点M的坐标是.
②设抛物线的表达式是,
轴,
点N的坐标是.
∵点P的横坐标为
∴点P的坐标是,
设交抛物线于另一点Q,
∵抛物线的对称轴是直线轴,
∴根据抛物线的轴对称性,点Q的坐标是.
(i)如图1,当点N在点M下方,即时,
,
,
由平移性质得,
∴
∴,
解得(舍去),.
(ii)图2,当点N在点M上方,点Q在点P右侧,
即时,,
,
解得(舍去),(舍去).
(ⅲ)如图3,当点N在点M上方,点Q在点P左侧,
即时,
,
,
解得(舍去),.
综上所述,m的值是1或.
11. (2021•江苏省盐城市)已知抛物线y=a(x﹣1)2+h经过点(0,﹣3)和(3,0).
(1)求a、h的值;
(2)将该抛物线向上平移2个单位长度,再向右平移1个单位长度,得到新的抛物线,直接写出新的抛物线相应的函数表达式.
【分析】(1)利用待定系数法确定函数关系式;
(2)根据平移规律“上加下减,左加右减”写出新抛物线解析式.
【解答】解:(1)将点(0,﹣3)和(3,0)分别代入y=a(x﹣1)2+h,得
.
解得.
所以a=1,h=﹣4.
(2)由(1)知,该抛物线解析式为:y=(x﹣1)2﹣4,将该抛物线向上平移2个单位长度,再向右平移1个单位长度,得到新的抛物线解析式为:y=(x﹣2)2﹣2或y=x2﹣4x+2.
12.(2021•北京市)在平面直角坐标系xOy中,点(1,m)和点(3,n)在抛物线y=ax2+bx(a>0)上.
(1)若m=3,n=15,求该抛物线的对称轴;
(2)已知点(﹣1,y1),(2,y2),(4,y3)在该抛物线上.若mn<0,比较y1,y2,y3的大小,并说明理由.
【答案】(1);(2),理由见解析
【解析】
【分析】(1)由题意易得点和点,然后代入抛物线解析式进行求解,最后根据对称轴公式进行求解即可;
(2)由题意可分当时和当时,然后根据二次函数的性质进行分类求解即可.
【详解】解:(1)当时,则有点和点,代入二次函数得:
,解得:,
∴抛物线解析式为,
∴抛物线的对称轴为;
(2)由题意得:抛物线始终过定点,则由可得:
①当时,由抛物线始终过定点可得此时的抛物线开口向下,即,与矛盾;
②当时,
∵抛物线始终过定点,
∴此时抛物线对称轴的范围为,
∵点在该抛物线上,
∴它们离抛物线对称轴的距离的范围分别为,
∵,开口向上,
∴由抛物线的性质可知离对称轴越近越小,
∴.
13 (2021•福建省)已知抛物线y=ax2+bx+c与x轴只有一个公共点.
(1)若抛物线过点P(0,1),求a+b的最小值;
(2)已知点P1(﹣2,1),P2(2,﹣1),P3(2,1)中恰有两点在抛物线上.
①求抛物线的解析式;
②设直线l:y=kx+1与抛物线交于M,N两点,点A在直线y=﹣1上,且∠MAN=90°,过点A且与x轴垂直的直线分别交抛物线和于点B,C.求证:△MAB与△MBC的面积相等.
【答案】(1)-1;(2)①;②见解析
【解析】
【分析】(1)先求得c=1,根据抛物线与x轴只有一个公共点,转化为判别式△=0,从而构造二次函数求解即可;
(2)①根据抛物线与x轴只有一个公共点,得抛物线上的点只能落在x轴的同侧,据此判断即可;②证明AB=BC即可
【详解】解:因为抛物线与x轴只有一个公共点,
以方程有两个相等的实数根,
所以,即.
(1)因为抛物线过点,所以,
所以,即.
所以,
当时,取到最小值.
(2)①因抛物线与x轴只有一个公共点,
所以抛物线上的点只能落在x轴的同侧.
又点中恰有两点在抛物线的图象上,
所以只能是在抛物线的图象上,
由对称性可得抛物线的对称轴为,所以,
即,因为,所以.
又点在抛物线的图象上,所以,
故抛物线的解析式为.
②由题意设,则.
记直线为m,分别过M,N作,垂足分别为E,F,
即,
因为,所以.
又,所以,所以.
所以,所以,即.
所以,
即.①
把代入,得,
解得,
所以.②
将②代入①,得,
即,解得,即.
所以过点A且与x轴垂直的直线为,
将代入,得,即,
将代入,得,
即,
所以,因此,
所以与的面积相等.
14. (2021•江苏省无锡市)在平面直角坐标系中,O为坐标原点,直线y=﹣x+3与x轴交于点B,与y轴交于点C,二次函数y=ax2+2x+c的图象过B、C两点,且与x轴交于另一点A,点M为线段OB上的一个动点,过点M作直线l平行于y轴交BC于点F,交二次函数y=ax2+2x+c的图象于点E.
(1)求二次函数的表达式;
(2)当以C、E、F为顶点的三角形与△ABC相似时,求线段EF的长度;
(3)已知点N是y轴上的点,若点N、F关于直线EC对称,求点N的坐标.
【分析】(1)由y=﹣x+3得B(3,0),C(0,3),代入y=ax2+2x+c即得二次函数的表达式为y=﹣x2+2x+3;
(2)由y=﹣x2+2x+3得A(﹣1,0),OB=OC,AB=4,BC=3,故∠ABC=∠MFB=∠CFE=45°,以C、E、F为顶点的三角形与△ABC相似,B和F为对应点,设E(m,﹣m2+2m+3),则F(m,﹣m+3),EF=﹣m2+3m,CF=m,①△ABC∽△CFE时,=,可得EF=,②△ABC∽△EFC时,=,可得EF=;
(3)连接NE,由点N、F关于直线EC对称,可得CF=EF=CN,故﹣m2+3m=m,解得m=0(舍去)或m=3﹣,即得CN=CF=m=3﹣2,N(0,3+1).
【解答】解:(1)在y=﹣x+3中,令x=0得y=3,令y=0得x=3,
∴B(3,0),C(0,3),
把B(3,0),C(0,3)代入y=ax2+2x+c得:
,解得,
∴二次函数的表达式为y=﹣x2+2x+3;
(2)如图:
在y=﹣x2+2x+3中,令y=0得x=3或x=﹣1,
∴A(﹣1,0),
∵B(3,0),C(0,3),
∴OB=OC,AB=4,BC=3,
∴∠ABC=∠MFB=∠CFE=45°,
∴以C、E、F为顶点的三角形与△ABC相似,B和F为对应点,
设E(m,﹣m2+2m+3),则F(m,﹣m+3),
∴EF=(﹣m2+2m+3)﹣(﹣m+3)=﹣m2+3m,CF==m,
①△ABC∽△CFE时,=,
∴=,
解得m=或m=0(舍去),
∴EF=,
②△ABC∽△EFC时,=,
∴=,
解得m=0(舍去)或m=,
∴EF=,
综上所述,EF=或.
(3)连接NE,如图:
∵点N、F关于直线EC对称,
∴∠NCE=∠FCE,CF=CN,
∵EF∥y轴,
∴∠NCE=∠CEF,
∴∠FCE=∠CEF,
∴CF=EF=CN,
由(2)知:
设E(m,﹣m2+2m+3),则F(m,﹣m+3),EF=(﹣m2+2m+3)﹣(﹣m+3)=﹣m2+3m,CF==m,
∴﹣m2+3m=m,解得m=0(舍去)或m=3﹣,
∴CN=CF=m=3﹣2,
∴N(0,3+1).
15. (2021•山东省威海市)在平面直角坐标系中,抛物线的顶点为A.
(1)求顶点A的坐标(用含有字母m的代数式表示);
(2)若点,在抛物线上,且,则m的取值范围是 ;(直接写出结果即可)
(3)当时,函数y的最小值等于6,求m的值.
【答案】(1)顶点A的坐标为;(2);(3)或
【解析】
【分析】(1)将抛物线解析式化成的形式,即可求得顶点A的坐标;
(2)将,代入抛物线中求得和的值,然后再解不等式即可求解;
(3)分类讨论,分对称轴在1的左侧、对称轴在3的右侧、对称轴在1,3之间共三种情况分别求出函数的最小值,进而求出m的值.
【详解】解:(1)由题意可知:
抛物线,
∴顶点A的坐标为;
(2)将代入中,
得到,
将代入中,
得到,
由已知条件知:,
∴,
整理得到:,
解得:,
故m的取值范围是:;
(3)二次函数的开口向上,故自变量离对称轴越远,其对应的函数值越大,二次函数的对称轴为,
分类讨论:
①当,即时,
时二次函数取得最小值为,
又已知二次函数最小值为6,
∴,解得或,
又,故符合题意;
②当,即时,
时二次函数取得最小值为,
又已知二次函数最小值为6,
∴,解得或,
又,故或都不符合题意;
③当,即时,
时二次函数取得最小值为,
又已知二次函数最小值为6,
∴,解得或,
又,故符合题意;
综上所述,或.
16. (2021•呼和浩特市)已知抛物线
(1)通过配方可以将其化成顶点式为__________,根据该抛物线在对称轴两侧从左到右图象的特征,可以判断,当顶点在x轴__________(填上方或下方),即__________0(填大于或小于)时,该抛物线与x轴必有两个交点;
(2)若抛物线上存在两点,,分布在x轴的两侧,则抛物线顶点必在x轴下方,请你结合A、B两点在抛物线上的可能位置,根据二次函数的性质,对这个结论的正确性给以说明;(为了便于说明,不妨设且都不等于顶点的横坐标;另如果需要借助图象辅助说明,可自己画出简单示意图)
(3)利用二次函数(1)(2)结论,求证:当,时,
解:(1)顶点式为: 下方 <
(2)若设且不等于顶点横坐标则A,B两点位置可能有以下三种情况
①当A,B都在对称轴左侧时,由于在对称轴左侧,函数值随x的增大而减小,所以点A在x轴上方,点B在x轴下方,顶点M在点B下方,所以抛物线顶点必在x轴下方.如图1所示
②当A,B都在对称轴右侧时,由于在对称轴右侧,函数值随x的增大而增大,所以点B在x轴上方,点A在x轴下方,顶点M在点A下方,所以抛物线顶点必在x轴下方.如图2所示
③当A,B在对称轴两侧时,由于A,B分布在x轴两侧,所以不管A,B哪个点在x轴下方,都可以根据抛物线的对称性将其中一个点对称到对称轴另一侧的抛物线上,同①或②,可以说明抛物线顶点必在x轴下方.如图3所示
(3)证明:令,
当时,;
当时,.
而
∴
∴上存在两点,
分别位于x轴两侧
∴由(1)(2)可知,顶点在x轴下方,
即
又,∴
即:
17. (2021•襄阳市)如图,直线与,轴分别交于,,顶点为的抛物线过点.
(1)求出点,的坐标及的值;
(2)若函数在时有最大值为,求的值;
(3)连接,过点作的垂线交轴于点.设的面积为.
①直接写出关于的函数关系式及的取值范围;
②结合与的函数图象,直接写出时的取值范围.
【答案】(1),,;(2);(3)①;②且a≠0或.
18. (2021•湖北省荆州市)已知:直线y=﹣x+1与x轴、y轴分别交于A,B两点,点C为直线AB上一动点,连接OC,∠AOC为锐角,在OC上方以OC为边作正方形OCDE,连接BE,设BE=t.
(1)如图1,当点C在线段AB上时,判断BE与AB的位置关系,并说明理由;
(2)直接写出点E的坐标(用含t的式子表示);
(3)若tan∠AOC=k,经过点A的抛物线y=ax2+bx+c(a<0)顶点为P,且有6a+3b+2c=0,△POA的面积为,当t=时,求抛物线的解析式.
【分析】(1)证明△OAC≌△OBE(SAS),则∠OBE=∠OAC=45°,进而求解;
(2)∠EBH=45°,则BH=EH=BE=t,即可求解;
(3)由△POA的面积=×AO×yP=×1×yP==,求出yP=1=c﹣,而抛物线过点A(1,0),故a+b+c=0,进而求解.
【解答】解:(1)直线y=﹣x+1与x轴、y轴分别交于A,B两点,
则点A、B的坐标分别为(1,0)、(0,1),
则∠OBA=∠OAB=45°,
∵∠AOC+∠BOC=90°,∠BOC+∠BOE=90°,
∴∠AOC=∠BOE,
∵AO=BO,OC=OE,
∴△OAC≌△OBE(SAS),
∴∠OBE=∠OAC=45°,AC=BE=t,
∴∠EBA=∠EBO+∠OBA=∠OAC+∠OBA=45°+45°=90°,
∴BE⊥AB;
(2)过点E作EH⊥OB于点H,
∵∠EBH=45°,
∴BH=EH=BE=t,
故点E的坐标为(﹣t,1﹣t);
(3)如上图,过点C作CN⊥OA于点N,
当t=时,即AC=t=,
则CN=AN=t=,
则ON=OA﹣NA=1﹣=CN,
故tan∠AOC==1=k,
∵△POA的面积=×AO×yP=×1×yP==,
解得yP=1=c﹣①,
∵抛物线过点A(1,0),故a+b+c=0②,
而6a+3b+2c=0③,
联立①②③并解得,
故抛物线的表达式为y=﹣x2+4x﹣3.
2021年全国中考数学真题分类汇编--函数:二次函数(试卷版): 这是一份2021年全国中考数学真题分类汇编--函数:二次函数(试卷版),共17页。
2021年全国中考数学真题分类汇编--函数:二次函数(答案版): 这是一份2021年全国中考数学真题分类汇编--函数:二次函数(答案版),共57页。
2021年全国中考数学真题 二次函数分类汇编: 这是一份2021年全国中考数学真题 二次函数分类汇编,共225页。