专题02 动点问题中的函数图象及规律探索问题(学生版)学案
展开
这是一份专题02 动点问题中的函数图象及规律探索问题(学生版)学案,共7页。学案主要包含了基础知识点综述,主要思想方法,精品例题解析等内容,欢迎下载使用。
动点问题中函数图象的题目的解决方法是:先根据动点运动规律找出所求与动点运动之间的关系,进而获取相应函数的解析式及函数值变化规律,达到求解的目的.
考查的重点是分段函数解析式的求解.
探索规律问题通常用归纳法,即从简单到复杂,从特殊到一般,这类题目考查的是学生的观察与归纳能力,注意从特殊到一般的归纳方法.
二、主要思想方法
分类讨论、数学归纳.
三、精品例题解析
例1. (2019·达州改编)如图,边长都为4的正方形ABCD和正三角形EFG如图放置,AB与EF在同一条直线上,且A点与F点重合,现将△EFG沿AB方向以每秒1个单位的速度匀速运动,当点F与B重合时停止. 在这个运动过程中,正方形ABCD与△EFG重叠部分的面积S与运动时间t的函数解析式是
例2. (2019·自贡) 均匀的向一个容器内注水,在注满水的过程中,水面的高度h与时间t的函数关系如图所示,则该容器是下列四个中的( )
例3. (2019·潍坊改编)如图,在矩形ABCD中,AB=2,AD=3,动点P沿着折线BCD从点B开始运动到点D,设运动的路程为x,△ADP的面积为y,则y与x之间的函数关系式是
例4. (2019·深圳模拟)如图①,在菱形ABCD中,动点P从点B出发,沿折线B→C→D→B运动. 设点P经过的路程为x,△ABP的面积为y. 把y看成x的函数,函数的图象如图②所示,则图②中的b等于
例5. 如图1,在扇形OAB中,∠O=60°,动点P从点O出发,沿O→A→B以1cm/s的速度匀速运动至点B,图2是点P运动过程中,△OBP的面积y(cm2)随时间x(s)变化的图象,则a,b的值分别为
例6. (2019·河南模拟)如图1,在矩形ABCD中,AB<BC,点E为对角线AC上的一个动点,连接BE,DE,过E作EF⊥BC于F.设AE=x,图1中某条线段的长为y,若表示y与x的函数关系的图象大致如图2所示,则这条线段可能是图1中的( )
A.线段BEB.线段EFC.线段CED.线段DE
例7. (2019·博罗县一模) 如图,已知A,B是反比例函数y=(k>0,x>0)图象上的两点,BC∥x轴,交y轴于点C,动点P从坐标原点O出发,沿O→A→B→C(图中“→”所示路线)匀速运动,终点为C,过P作PM⊥x轴,垂足为M.设三角形OMP的面积为S,P点运动时间为t,则S关于t的函数图象大致为( )
A. B. C. D.
例8. (2017·濮阳县一模)如图,等边△ABC边长为2,四边形DEFG是平行四边形,DG=2,DE=3,∠GDE=60°,BC和DE在同一条直线上,且点C与点D重合,现将△ABC沿D→E的方向以每秒1个单位的速度匀速运动,当点B与点E重合时停止,则在这个运动过程中,△ABC与四边形DEFG的重合部分的面积S与运动时间t之间的函数关系图象大致是( )
A.B.C.D.
例9. (2019·衡阳)如图,在直角三角形ABC中,∠C=90°,AC=BC,E是AB的中点,过点E作AC和BC的垂线,垂足分别为点D和点F,四边形CDEF沿着CA方向匀速运动,点C与点A重合时停止运动,设运动时间为t,运动过程中四边形CDEF与△ABC的重叠部分面积为S.则S关于t的函数图象大致为( )
A.B.C.D.
例10.a是不为1的有理数,我们把成为a的差倒数,如2的差倒数是-1,-1的差倒数是0.5. 已知a1=5,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数……,以此类推,则a2019的值是
例11. (2019·潍坊)如图所示,在平面直角坐标系中,一组同心圆的圆心为坐标原点O,它们的半径分别为1,2,3,……,按照“加1”依次递增,一组平行线,l0,l1,l2,l3,……都与x轴垂直,相邻两直线的间距为1,其中l0与y轴重合. 若半径为2的圆与l1在第一象限交于点P1,半径为3的圆与l2在第一象限交于点P2,……,半径为n+1的圆与ln在第一象限交于点Pn,则点Pn的坐标为
例12. (2019·连云港)如图,将一等边三角形三条边各八等分按顺时针方向标注各等分点的序号0、1、2、3、4、5、6、7、8,如图所示,将和为8的点连接起来,得到了“三角形坐标系”.在建立的坐标系中,每一点的坐标用过这一点且平行(重合)于原三角形三条边的直线与三边交点的序号来表示(水平方向开始,按顺时针方向),如点A的坐标为(1,2,5),点B的坐标为(4,1,3),则点C的坐标为
例13. (2019·衡阳) 在平面直角坐标系中,抛物线y=x2的图象如图所示.已知A点坐标为(1,1),过点A作AA1∥x轴交抛物线于点A1,过点A1作A1A2∥OA交抛物线于点A2,过点A2作A2A3∥x轴交抛物线于点A3,过点A3作A3A4∥OA交抛物线于点A4……,依次进行下去,则点A2019的坐标为 .
例14. (2019·怀化)探索与发现:下面是用分数(数字表示面积)砌成的“分数墙”,则整面“分数墙”的总面积是 .
相关学案
这是一份2022届中考数学专题复习训练——二次函数 专题2.2函数动点图象问题学案,共31页。学案主要包含了实际问题等内容,欢迎下载使用。
这是一份专题01 动点问题中的最值、最短路径问题(学生版)学案,共5页。学案主要包含了基础知识点综述,主要思想方法,精品例题解析等内容,欢迎下载使用。
这是一份专题07 动点折叠类问题中落点“有迹性”问题探究(学生版)学案,共5页。学案主要包含了基础知识点综述,精品例题解析等内容,欢迎下载使用。