|试卷下载
搜索
    上传资料 赚现金
    2020年浙江省温州市中考一模数学试卷
    立即下载
    加入资料篮
    2020年浙江省温州市中考一模数学试卷01
    2020年浙江省温州市中考一模数学试卷02
    2020年浙江省温州市中考一模数学试卷03
    还剩11页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2020年浙江省温州市中考一模数学试卷

    展开
    这是一份2020年浙江省温州市中考一模数学试卷,共14页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(共10小题;共50分)
    1. 我国是较早认识负数的国家,南宋数学家李冶在算筹的个位数上用斜画一杠表示负数,如“−32”写成“”,下列算筹表示负数的是
    A. B.
    C. D.

    2. “浮云游子意,明月故乡情”,4 月疫情期间温州支援意大利口罩达 2700000 只,其中 2700000 用科学记数法表示为
    A. 2.7×106B. 27×105C. 2.7×105D. 0.27×107

    3. 小明家购买了一款新型吹风机.如图所示,吹风机的主体是由一个空心圆柱体构成,手柄可近似看作一个圆柱体,这个几何体的主视图为
    A. B.
    C. D.

    4. 计算 x3+x3 的结果是
    A. x6B. x9C. 2x6D. 2x3

    5. 甲、乙、丙、丁四名射击运动员参加射击预选赛,他们射击成绩的平均数及方差如表所示,要选一个成绩较好且稳定的运动员去参赛,应选运动员
    甲乙丙丁x环8998s2环211.211.2
    A. 甲B. 乙C. 丙D. 丁

    6. 不等式 −2x≤−x+2 的解在数轴上的表示正确的是
    A. B.
    C. D.

    7. 一款便携式音箱以锂电池作为电源,该电池的电压为定值,工作时电流 I(单位:A)与电阻 R(单位:Ω)之间的函数关系如图所示,则当电阻 R 为 4 Ω 时,电流 I 为
    A. 6 AB. 32 AC. 1 AD. 23 A

    8. 为美化校园,学校计划购买甲、乙两种花木,其中甲种花木每棵 100 元,乙种花木每棵 80 元,若甲种花木的数量是乙种花木的 3 倍,且两种花木共花费 19000 元.设购买甲种花木 x 棵,乙种花木 y 棵,根据题意,可列方程组
    A. x=3y,100x+80y=19000B. y=3x,100x+80y=19000
    C. x=3y,80x+100y=19000D. y=3x,80x+100y=19000

    9. 在 △ABC 中,BC=5,AC=12,∠C=90∘,以点 B 为圆心,BC 为半径作圆弧,与 AB 交于 D,再分别以 A,D 为圆心,大于 12AD 的长为半径作圆弧交于点 M,N,作直线 MN,交 AC 于 E,则 AE 的长度为
    A. 42B. 4C. 133D. 5

    10. 已知函数 y1=ax2−2ax+ca>0 , y2=−ax2+2ax+c ,当 0≤x≤2 时, 2≤y1≤3 ,则当 0≤x≤2 时, y2 的最大值是
    A. −3B. 2C. 3D. 4

    二、填空题(共6小题;共30分)
    11. 因式分解:m2−25= .

    12. 在不透明的袋子里装入 3 个红球和 2 个白球(除颜色不同外其余均相同),从中随机摸出一个球为白球的概率是 .

    13. 如图,四边形 ABCD 内接于 ⊙O,若 ∠AOC=∠B,则 ∠D 的度数为 ∘.

    14. 如图,在矩形 ABCD 中,BC=8,E 为 BC 中点,将 △ABE 沿 AE 翻折后,得到 △AEF,再将 CE 折向 FE,使点 C 与点 F 重合,折痕为 EG.若 CG=3,则 AG= .

    15. 如图,已知点 A5,0,在直线 y=12x+52 上取点 B,过点 B 作 x 轴的平行线,交直线 y=−x+b 于点 C.若四边形 OACB 为菱形,则 b= .

    16. 将折叠书架画出侧面示意图,AB 为面板架,CD 为支撑架,EF 为锁定杆,F 可在 CD 上移动或固定.已知 BC=CE=8 cm.如图甲,将面板 AB 竖直固定时(AB⊥BD),点 F 恰为 CD 的中点.如图乙,当 CF=17 cm 时,EF⊥AB,则支撑架 CD 的长度为 cm.

    三、解答题(共8小题;共104分)
    17. 请回答:
    (1)计算:2sin30∘+2−10+9.
    (2)解方程:x−12=2x+1.

    18. 如图,在 △ABC 中,AB=AC,点 D 在 BC 边上,点 E 在 AC 边上,连接 AD,DE.已知 ∠1=∠2,AD=DE.
    (1)求证:△ABD≌△DCE;
    (2)若 BD=2,CD=5,求 AE 的长.

    19. 某学校为了解疫情期间学生在家体育锻炼情况,从全体学生中随机抽取若干学生进行调查,以下是根据调查数据绘制的统计图表的一部分,根据信息回答下列问题.
    组别平均每日体育锻炼时间分人数A0≤x≤1018B103024
    (1)本次调查共抽取 名学生.
    (2)抽查结果中,B 组有 人.
    (3)在抽查得到的数据中,中位数位于 组(填组别).
    (4)若这所学校共有学生 1200 人,则估计平均每日锻炼超过 20 分钟有多少人?

    20. 如图,在 5×5 的方格纸中,点 A,B 均在格点上,请按要求画图.
    (1)在图 1 中画个面积为 2 的格点 △ABC;
    (2)在图 2 中画一个格点 Rt△ADE,使 AB 是 △ADE 的中线.

    21. 在平面直角坐标系中,抛物线的表达式为 y=ax2+2bx+2b−aa≠0.
    (1)当 x=−1 时,求 y 的值;
    (2)将抛物线向左平移 2 个单位后,恰经过点 −1,0,求 b 的值.

    22. 如图,四边形 ABCD 中,∠B=90∘,以 AD 为直径的 ⊙O 交 AB 于点 E,与 BC 相切于点 C,连接 CE.
    (1)求证:CD=CE.
    (2)若 AE=3,tan∠D=43,求 ⊙O 的半径.

    23. 某商店准备采购甲、乙两种消毒水进行售卖,每瓶的进价与利润如表:
    甲乙每瓶进价元aa+20每瓶利润元2030
    已知进货成本 1500 元采购甲种消毒水的数量和 2500 元买乙种消毒水的数量相等.
    (1)求 a 的值;
    (2)若该商店准备拿出 12000 元全部用来进货,由于仓库存放限制,总数量不多于 300 瓶,问如何进货能使消毒水全部售出后利润最大,最大利润是多少元?
    (3)在(2)获得最大利润的进货方案下,该商店预留了甲、乙两种消毒水各若干瓶供店内消毒使用,剩余的消毒水被抢购一空,共获得利润 7350 元,求商店共预留了多少瓶?

    24. 如图,在正方形 ABCD 中,E,F 分别是 AD,CD 上的点,且 AE=CF,M,N 分别是 EF,EB 的中点,延长 AN 交 BF 于点 K.
    (1)①小明通过画图探究得到以下数据,根据题意,将表格补充完整.
    ∠FBC10∘20∘40∘∠EBF70∘ ∠BNK20∘
    ②写出 ∠EBF 与 ∠BNK 的数量关系,并给出证明.
    (2)当四边形 MNKF 中有一条边是 NK 的 2 倍时,求 cs∠EBF 的值.
    (3)直线 MN 分别交 AB,CD 于点 P,Q,延长 EF 交射线 BC 于点 G,当点 G 关于直线 BF 的对称点落在直线 MN 上时,直接写出 PNMQ 的值.
    答案
    第一部分
    1. B【解析】在算筹的个位数上用斜画一杠表示负数,如“−32”写成“”,
    算筹表示负数的是选项B:.
    2. A【解析】2700000=2.7×106.
    3. C【解析】根据主视图的概念可知,从物体的正面看得到的视图是选项C.故选:C.
    4. D【解析】x3+x3=2x3.
    5. C
    【解析】由图可知,乙、丙的平均成绩好,由于 S乙2>S丙2,故乙的方差大,波动大.
    6. B【解析】∵−2x≤−x+2,
    ∴−2x+x≤2,则 −x≤2,
    ∴x≥−2,
    将不等式解集表示在数轴上如下:
    7. B【解析】设用电阻 R 表示电流 I 的函数解析式为 I=kR,
    ∵ 反比例函数图象过 2,3,
    ∴k=3×2=6,
    ∴I=6R,
    当 R=4 Ω 时,I=64=32.
    8. A【解析】由题意可得 x=3y,100x+80y=19000.
    9. C【解析】由作图可得 BD=BC=5,AD=13−5=8,MN 垂直平分 AD.
    ∴AF=12AD=4,
    ∵BC=5,AC=12,∠C=90∘,
    ∴AB=13.
    ∵∠AFE=∠ACB=90∘,∠A=∠A,
    ∴△AFE∽△ACB.
    ∴AEAB=AFAC,即 AE13=412,解得 AE=133.
    10. D
    【解析】由题意得:当 0≤x≤2 时,函数 y1 在对称轴 x=1 时取得最小值,即 y1=a−2a+c=2, ⋯⋯①
    函数 y1 在 x=2 时,取得最大值,即 y1=4a−4a+c=3, ⋯⋯②
    联立 ①② 并解得: a=1,c=3,
    故 y2=−ax2+2ax+c=−x2+2x+3 ,
    当 0≤x≤2 时, y2 在对称轴处取得最大值,
    ∴ 当 x=1 时, y=4 ,
    故最大值是 4 ,
    故选:D.
    第二部分
    11. m+5m−5
    【解析】原式=m+5m−5.
    12. 25
    【解析】从中随机摸出一个球共有 5 种等可能结果,其中摸出一个球为白球的有 2 种结果,所以摸出一个球为白球的概率为 25,故答案为:25.
    13. 60
    【解析】由圆周角定理得,∠AOC=2∠D,
    ∵∠AOC=∠B,
    ∴∠B=2∠D,
    ∵ 四边形 ABCD 内接于 ⊙O,
    ∴∠D+∠B=180∘,
    ∴∠D+2∠D=180∘,
    解得,∠D=60∘.
    14. 253
    【解析】∵ 将 △ABE 沿 AE 翻折后,得到 △AEF,再将 CE 折向 FE,使点 C 与点 F 重合,
    ∴AB=AF,∠B=∠AFE=90∘,FG=CG=3,∠C=∠EFG=90∘,
    ∴∠AFE+∠GFE=180∘,
    ∴ 点 A,点 F,点 G 三点共线,
    ∵AD2+DG2=AG2,
    ∴64+AB−32=AB+32,
    ∴AB=163,
    ∴AG=AF+FG=253.
    15. 12
    【解析】∵ 点 A5,0,
    ∴OA=5,
    ∵ 四边形 OACB 为菱形,
    ∴OB=OA=5,
    根据题意,设 Ba,12a+52,
    ∴a2+12a+522=52,
    整理得 a2+2a−15=0,解得 a=3 或 a=−5(不合题意,舍去).
    ∴B3,4.
    ∴C8,4.
    ∵ 直线 y=−x+b 经过点 C,
    ∴4=−8+b,解得 b=12.
    16. 297
    【解析】∵EF⊥AB,CF=17 cm,BC=CE=8 cm,
    ∴EF=CF2−CE2=15 cm,
    过 F 作 FG⊥AB,
    ∵AB⊥BD,
    ∴FG∥BD,
    ∵ 点 F 恰为 CD 的中点,
    ∴CG=12BC=4 cm,
    ∴EG=8+4=12 cm,
    ∵EF=15 cm,
    ∴FG=EF2−EG2=9 cm,
    ∴BD=2FG=18 cm,
    ∴CD=CB2+BD2=297.
    第三部分
    17. (1) 原式=2×12+1+3=1+1+3=5.
    (2)
    x2−4x=0.xx−4=0.x=0或x−4=0.
    所以
    x1=0,x2=4.
    18. (1) ∵AB=AC,
    ∴∠B=∠C.
    又 ∠1=∠2,AD=DE,
    ∴△ABD≌△DCEAAS.
    (2) ∵△ABD≌△DCE,
    ∴AB=DC=5,CE=BD=2.
    ∵AC=AB,
    ∴AC=5.
    ∴AE=AB−EC=5−2=3.
    19. (1) 120
    【解析】24÷20=120(名).
    故本次调查共抽取 120 名学生.
    (2) 36
    【解析】120−18−42−24=36(人).
    故 B 组有 36 人.
    (3) C
    【解析】在抽查得到的数据中,第 60 个和第 61 个数据都在 C 组,故中位数位于 C 组.
    (4) 1200×42+24120=660(人).
    答:这所学校平均每日锻炼超过 20 分钟大约有 660 人.
    20. (1) 如图 1 中,△ABC 即为所求(答案不唯一).
    (2) 如图 2 中,△ADE 即为所求(答案不唯一).
    21. (1) 当 x=−1 时,y=a−2b+2b−a=0.
    (2) ∵ 将抛物线向左平移 2 个单位后,恰经过点 −1,0,
    ∴ 原抛物线经过 1,0.
    把 1,0 代入解析式可得:0=a+2b+2b−a,
    ∴b=0.
    22. (1) 如图,连接 DE,OC 交于点 F.
    ∵BC 切 ⊙O 于点 C,
    ∴∠OCB=90∘,
    ∵∠B=90∘,
    ∴OC∥AB,
    ∵AD 是圆的直径,
    ∴∠DEA=∠FEB=90∘,
    ∴OC⊥DE,
    ∴DC=CE,
    ∴CD=CE.
    (2) 如图,连接 AC,
    ∵ 四边形 ABCD 内接于圆,
    ∴∠CEB=∠ADC,
    ∵CD=CE,
    ∴∠DAC=∠CAB,
    ∴∠ADC=∠ACB,
    ∴tan∠ACB=tan∠CEB=tan∠ADC,
    设 BE=3x,则 BC=4x,CE=5x,
    ∴3+3x4x=43,
    解得:x=97,
    ∴CD=457,
    ∴AD=CD2+AC2=757,
    ∴OA=7514.
    23. (1) 由题可得:
    1500a=2500a+20.
    解得
    a=30.
    经检验 a=30 是方程的解.
    ∴a 的值为 30.
    (2) 设甲种买了 x 瓶,则乙种买了 12000−30x50 瓶.
    由题意可得:
    x+12000−30x50≤300.
    解得
    x≤150.
    设利润为 y,可得 y=20x+30×12000−30x50,即 y=2x+7200.
    ∵k=2>0,
    ∴y 随 x 增大而增大.
    当 x=150,y 有最大值为 7500.
    答:最大利润为 7500 元.
    (3) 7500−7350=150(元).
    设甲种保留了 a 瓶,乙种保留了 b 瓶,20a+30b=150.
    该方程的正整数解为 a=6,b=1 或 a=3,b=3.
    答:商家共预留了 6 瓶或 7 瓶.
    24. (1) ① 50∘;10∘;40∘;80∘
    ②结论:∠EBF+∠BNK=90∘.
    理由:在正方形 ABCD 中,AB=BC,∠BAD=∠C=90∘,
    ∵AE=CF,
    ∴△ABE≌△BCFSAS,
    ∴∠CBF=∠ABE,BE=BF,
    ∴∠EBF=90∘−2∠ABN,
    ∵N 是 BE 的中点,
    ∴AN=BN,
    ∴∠BNK=2∠ABN,
    ∴∠EBF+∠BNK=90∘.
    【解析】①根据 ∠CBF=∠ABE,直角三角形斜边中线的性质可知:当 ∠FBC=20∘ 时,∠EBF=50∘,∠BNK=40∘,
    当 ∠FBC=40∘ 时,∠EBF=10∘,∠BNK=80∘.
    (2) ①当 MN=2NK 时,
    ∵MN=12BF=12BE=BN,
    ∴BN=2NK,
    ∴∠EBF=30∘,
    ∴cs∠EBF=32.
    ②当 KF=2NK 时,
    ∵BN=12BE=12BK+KF,NK=12KF,
    ∵BN2=BK2+NK2,
    ∴3BK=2KF=4NK,
    设 BK=4m,则 NK=3m,BN=5m,
    ∴cs∠EBF=BKBN=45.
    ③当 MF=2NK 时,过点 M 作 MG⊥BF 于点 G(如图 1 中).
    ∵MN∥BF,
    ∴∠MGK=∠GMN=∠NKG=90∘,
    ∴ 四边形 MNKG 是矩形,
    ∴MG=NK,
    ∴MF=2MG,
    ∴∠MFB=∠BEF=30∘,
    ∴∠EBF=120∘>90∘,
    ∴ 此情况不存在.
    (3) 12.
    【解析】如图 2 中,连接 BGʹ,GGʹ,延长 GE 交 BA 的延长线于 H,过点 E 作 EJ∥PQ 交 AB 于 J.
    ∵BN=NE,PN∥EJ,
    ∴BP=PJ,
    ∴EJ=2PN,
    ∵G,Gʹ 关于 BP 对称,
    ∴BF 垂直平分线段 GGʹ,
    ∵BF∥PGʹ,
    ∴FG=FM,
    ∵BE=BF,
    ∴∠BEF=∠BFE,
    ∴∠BEH=∠BFG,
    ∵BE=BF,∠HBE=∠GBF,
    ∴△HBE≌△GBFAAS,
    ∴EH=FG,BH=BG,
    ∴EH=FM,
    ∵∠H=∠G=45∘,
    ∵∠FCG=90∘,
    ∴∠CFG=∠MFQ=45∘,
    ∵EJ∥PM,
    ∴∠EEJ=∠HMP=∠FMQ,
    ∴△HEJ≌△FMQASA,
    ∴EJ=MQ,
    ∵EJ=2PN,
    ∴MQ=2PN.
    相关试卷

    2023年浙江省温州市中考数学试卷: 这是一份2023年浙江省温州市中考数学试卷,共30页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2018年浙江省温州市中考数学一模试卷: 这是一份2018年浙江省温州市中考数学一模试卷,共17页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2019年浙江省温州市中考数学一模试卷: 这是一份2019年浙江省温州市中考数学一模试卷,共17页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map