2021年浙江中考数学真题分类汇编之统计与概率
展开2021年浙江中考数学真题分类汇编之统计与概率
一.选择题(共9小题)
1.(2021•温州)如图是某天参观温州数学名人馆的学生人数统计图.若大学生有60人,则初中生有( )
A.45人 B.75人 C.120人 D.300人
2.(2021•宁波)甲、乙、丙、丁四名射击运动员进行射击测试,每人10次射击成绩的平均数(单位:环)及方差S2(单位:环2)如下表所示:
甲
乙
丙
丁
9
8
9
9
S2
1.6
0.8
3
0.8
根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择( )
A.甲 B.乙 C.丙 D.丁
3.(2021•衢州)一个布袋里放有3个红球和2个白球,它们除颜色外其余都相同.从布袋中任意摸出1个球,摸到白球的概率是( )
A. B. C. D.
4.(2021•台州)超市货架上有一批大小不一的鸡蛋,某顾客从中选购了部分大小均匀的鸡蛋,设货架上原有鸡蛋的质量(单位:g)平均数和方差分别为,s2,该顾客选购的鸡蛋的质量平均数和方差分别为,s12,则下列结论一定成立的是( )
A.< B.> C.s2>s12 D.s2<s12
5.(2021•杭州)某轨道列车共有3节车厢,设乘客从任意一节车厢上车的机会均等.某天甲、乙两位乘客同时乘同一列轨道列车,则甲和乙从同一节车厢上车的概率是( )
A. B. C. D.
6.(2021•湖州)下列事件中,属于不可能事件的是( )
A.经过红绿灯路口,遇到绿灯
B.射击运动员射击一次,命中靶心
C.班里的两名同学,他们的生日是同一天
D.从一个只装有白球和红球的袋中摸球,摸出黄球
7.(2021•绍兴)在一个不透明的袋中装有6个只有颜色不同的球,其中3个红球、2个黄球和1个白球.从袋中任意摸出一个球,是白球的概率为( )
A. B. C. D.
8.(2021•嘉兴)5月1日至7日,我市每日最高气温如图所示,则下列说法错误的是( )
A.中位数是33℃
B.众数是33℃
C.平均数是℃
D.4日至5日最高气温下降幅度较大
9.(2021•丽水)一个布袋里装有3个红球和5个黄球,它们除颜色外其余都相同.从中任意摸出一个球是红球的概率是( )
A. B. C. D.
二.填空题(共9小题)
10.(2021•杭州)现有甲、乙两种糖果的单价与千克数如下表所示.
甲种糖果
乙种糖果
单价(元/千克)
30
20
千克数
2
3
将这2千克甲种糖果和3千克乙种糖果混合成5千克什锦糖果,若商家用加权平均数来确定什锦糖果的单价,则这5千克什锦糖果的单价为 元/千克.
11.(2021•金华)某单位组织抽奖活动,共准备了150张奖券,设一等奖5个,二等奖20个,三等奖80个.已知每张奖券获奖的可能性相同,则1张奖券中一等奖的概率是 .
12.(2021•衢州)为庆祝建党100周年,某校举行“庆百年红歌大赛”.七年级5个班得分分别为85,90,88,95,92,则5个班得分的中位数为 分.
13.(2021•温州)一个不透明的袋中装有21个只有颜色不同的球,其中5个红球,7个白球,9个黄球.从中任意摸出1个球是红球的概率为 .
14.(2021•台州)一个不透明布袋中有2个红球,1个白球,这些球除颜色外无其他差别,从中随机摸出一个小球,该小球是红色的概率为 .
15.(2021•宁波)一个不透明的袋子里装有3个红球和5个黑球,它们除颜色外其余都相同.从袋中任意摸出一个球是红球的概率为 .
16.(2021•丽水)根据第七次全国人口普查,华东A,B,C,D,E,F六省60岁及以上人口占比情况如图所示,这六省60岁及以上人口占比的中位数是 .
17.(2021•湖州)某商场举办有奖销售活动,每张奖券被抽中的可能性相同,若以每1000张奖券为一个开奖单位,设5个一等奖,15个二等奖,不设其他奖项,则只抽1张奖券恰好中奖的概率是 .
18.(2021•嘉兴)看了《田忌赛马》故事后,小杨用数学模型来分析:齐王与田忌的上中下三个等级的三匹马记分如表,每匹马只赛一场,两数相比,大数为胜,三场两胜则赢.已知齐王的三匹马出场顺序为10,8,6.若田忌的三匹马随机出场,则田忌能赢得比赛的概率为 .
马匹
姓名
下等马
中等马
上等马
齐王
6
8
10
田忌
5
7
9
三.解答题(共10小题)
19.(2021•嘉兴)某市为了解八年级学生视力健康状况,在全市随机抽查了400名八年级学生2021年初的视力数据,并调取该批学生2020年初的视力数据,制成如图统计图(不完整):
青少年视力健康标准
类别
视力
健康状况
A
视力≥5.0
视力正常
B
4.9
轻度视力不良
C
4.6≤视力≤4.8
中度视力不良
D
视力≤4.5
重度视力不良
根据以上信息,请解答:
(1)分别求出被抽查的400名学生2021年初轻度视力不良(类别B)的扇形圆心角度数和2020年初视力正常(类别A)的人数.
(2)若2021年初该市有八年级学生2万人,请估计这些学生2021年初视力正常的人数比2020年初增加了多少人?
(3)国家卫健委要求,全国初中生视力不良率控制在69%以内.请估计该市八年级学生2021年初视力不良率是否符合要求?并说明理由.
20.(2021•衢州)为进一步做好“光盘行动”,某校食堂推出“半份菜”服务,在试行阶段,食堂对师生满意度进行抽样调查.并将结果绘制成如下统计图(不完整).
(1)求被调查的师生人数,并补全条形统计图.
(2)求扇形统计图中表示“满意”的扇形圆心角度数.
(3)若该校共有师生1800名,根据抽样结果,试估计该校对食堂“半份菜”服务“很满意”或“满意”的师生总人数.
21.(2021•金华)小聪、小明准备代表班级参加学校“党史知识”竞赛,班主任对这两名同学测试了6次,获得如图测试成绩折线统计图.根据图中信息,解答下列问题:
(1)要评价每位同学成绩的平均水平,你选择什么统计量?求这个统计量.
(2)求小聪成绩的方差.
(3)现求得小明成绩的方差为S小明2=3(单位:平方分).根据折线统计图及上面两小题的计算,你认为哪位同学的成绩较好?请简述理由.
22.(2021•绍兴)绍兴莲花落,又称“莲花乐”,“莲花闹”,是绍兴一带的曲艺.为了解学生对该曲种的熟悉度,某校设置了:非常了解、了解、了解很少、不了解四个选项,随机抽查了部分学生进行问卷调查,要求每名学生只选其中的一项,并将抽查结果绘制成不完整的统计图.
根据图中信息,解答下列问题:
(1)本次接受问卷调查的学生有多少人?并求图2中“了解”的扇形圆心角的度数;
(2)全校共有1200名学生,请你估计全校学生中“非常了解”、“了解”莲花落的学生共有多少人.
23.(2021•台州)杨梅果实成熟期正值梅雨季节,雨水过量会导致杨梅树大量落果,给果农造成损失.为此,市农科所开展了用防雨布保护杨梅果实的实验研究.在某杨梅果园随机选择40棵杨梅树,其中20棵加装防雨布(甲组),另外20棵不加装防雨布(乙组).在杨梅成熟期,统计了甲、乙两组中每一棵杨梅树的落果率(落地的杨梅颗数占树上原有杨梅颗数的百分比),绘制成统计图表(数据分组包含左端值不包含右端值).
甲组杨梅树落果率频数分布表
落果率
组中值
频数(棵)
0≤x<10%
5%
12
10%≤x<20%
15%
4
20%≤x<30%
25%
2
30%≤x<40%
35%
1
40%≤x<50%
45%
1
(1)甲、乙两组分别有几棵杨梅树的落果率低于20%?
(2)请用落果率的中位数或平均数,评价市农科所“用防雨布保护杨梅果实”的实际效果;
(3)若该果园的杨梅树全部加装这种防雨布,落果率可降低多少?说出你的推断依据.
24.(2021•杭州)为了解某校某年级学生一分钟跳绳情况,对该年级全部360名学生进行一分钟跳绳次数的测试,并把测得数据分成四组,绘制成如图所示的频数表和未完成的频数分布直方图(每一组不含前一个边界值,含后一个边界值).
某校某年级360名学生一分钟跳绳次数的频数表
组别(次)
频数
100~130
48
130~160
96
160~190
a
190~220
72
(1)求a的值;
(2)把频数分布直方图补充完整;
(3)求该年级一分钟跳绳次数在190次以上的学生数占该年级全部学生数的百分比.
25.(2021•温州)某校将学生体质健康测试成绩分为A,B,C,D四个等级,依次记为4分,3分,2分,1分.为了解学生整体体质健康状况,拟抽样进行统计分析.
(1)以下是两位同学关于抽样方案的对话:
小红:“我想随机抽取七年级男、女生各60人的成绩.”
小明:“我想随机抽取七、八、九年级男生各40人的成绩.”
根据如图学校信息,请你简要评价小红、小明的抽样方案.
如果你来抽取120名学生的测试成绩,请给出抽样方案.
(2)现将随机抽取的测试成绩整理并绘制成如图统计图,请求出这组数据的平均数、中位数和众数.
26.(2021•宁波)图1表示的是某书店今年1~5月的各月营业总额的情况,图2表示的是该书店“党史”类书籍的各月营业额占书店当月营业总额的百分比情况.若该书店1~5月的营业总额一共是182万元,观察图1、图2,解答下列问题:
(1)求该书店4月份的营业总额,并补全条形统计图.
(2)求5月份“党史”类书籍的营业额.
(3)请你判断这5个月中哪个月“党史”类书籍的营业额最高,并说明理由.
27.(2021•丽水)在创建“浙江省健康促进学校”的过程中,某数学兴趣小组针对视力情况随机抽取本校部分学生进行调查,并按照国家分类标准统计人数,绘制成两幅不完整的统计图表,请根据图表信息解答下列问题:
抽取的学生视力情况统计表
类别
检查结果
人数
A
正常
88
B
轻度近视
▲
C
中度近视
59
D
重度近视
▲
(1)求所抽取的学生总人数;
(2)该校共有学生约1800人,请估算该校学生中,近视程度为中度和重度的总人数;
(3)请结合上述统计数据,为该校做好近视防控,促进学生健康发展提出一条合理的建议.
28.(2021•湖州)为了更好地了解党的历史,宣传党的知识,传颂英雄事迹,某校团支部组建了:A.党史宣讲;B.歌曲演唱;C.校刊编撰;D.诗歌创作等四个小组,团支部将各组人数情况制成了统计图表(不完整).
各组参加人数情况统计表
小组类别
A
B
C
D
人数(人)
10
a
15
5
根据统计图表中的信息,解答下列问题:
(1)求a和m的值;
(2)求扇形统计图中D所对应的圆心角度数;
(3)若在某一周各小组平均每人参与活动的时间如下表所示:
小组类别
A
B
C
D
平均用时(小时)
2.5
3
2
3
求这一周四个小组所有成员平均每人参与活动的时间.
2021年浙江中考数学真题分类汇编之统计与概率
参考答案与试题解析
一.选择题(共9小题)
1.(2021•温州)如图是某天参观温州数学名人馆的学生人数统计图.若大学生有60人,则初中生有( )
A.45人 B.75人 C.120人 D.300人
【考点】扇形统计图.菁优网版权所有
【专题】统计的应用;应用意识.
【分析】利用大学生的人数以及所占的百分比可得总人数,用总人数乘以初中生所占的百分比即可求解.
【解答】解:参观温州数学名人馆的学生人数共有60÷20%=300(人),
初中生有300×40%=120(人),
故选:C.
【点评】本题考查了扇形统计图.关键是利用大学生的人数以及所占的百分比可得总人数,解题时要细心.
2.(2021•宁波)甲、乙、丙、丁四名射击运动员进行射击测试,每人10次射击成绩的平均数(单位:环)及方差S2(单位:环2)如下表所示:
甲
乙
丙
丁
9
8
9
9
S2
1.6
0.8
3
0.8
根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择( )
A.甲 B.乙 C.丙 D.丁
【考点】算术平均数;方差.菁优网版权所有
【专题】统计的应用;应用意识.
【分析】根据平均环数比较成绩的好坏,根据方差比较数据的稳定程度.
【解答】解:甲、丙、丁射击成绩的平均环数较大,
∵丁的方差<甲的方差<丙的方差,
∴丁比较稳定,
∴成绩较好状态稳定的运动员是丁,
故选:D.
【点评】本题考查的是方差和算术平均数,掌握方差反映了一组数据的波动大小,方差越大,波动性越大,方差越小,数据越稳定是解题的关键.
3.(2021•衢州)一个布袋里放有3个红球和2个白球,它们除颜色外其余都相同.从布袋中任意摸出1个球,摸到白球的概率是( )
A. B. C. D.
【考点】概率公式.菁优网版权所有
【专题】概率及其应用;数据分析观念.
【分析】根据概率公式,用白球的个数除以球的总个数即可.
【解答】解:∵从放有3个红球和2个白球布袋中摸出一个球,共有5种等可能结果,其中摸出的球是白球的有2种结果,
∴从布袋中任意摸出1个球,摸到白球的概率是,
故选:D.
【点评】本题主要考查概率公式,随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.
4.(2021•台州)超市货架上有一批大小不一的鸡蛋,某顾客从中选购了部分大小均匀的鸡蛋,设货架上原有鸡蛋的质量(单位:g)平均数和方差分别为,s2,该顾客选购的鸡蛋的质量平均数和方差分别为,s12,则下列结论一定成立的是( )
A.< B.> C.s2>s12 D.s2<s12
【考点】算术平均数;方差.菁优网版权所有
【专题】统计的应用;应用意识.
【分析】根据方差的意义求解.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.
【解答】解:∵超市货架上有一批大小不一的鸡蛋,某顾客从中选购了部分大小均匀的鸡蛋,
∴货架上原有鸡蛋的质量的方差s2>该顾客选购的鸡蛋的质量方差s12,而平均数无法比较.
故选:C.
【点评】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
5.(2021•杭州)某轨道列车共有3节车厢,设乘客从任意一节车厢上车的机会均等.某天甲、乙两位乘客同时乘同一列轨道列车,则甲和乙从同一节车厢上车的概率是( )
A. B. C. D.
【考点】列表法与树状图法.菁优网版权所有
【专题】概率及其应用;数据分析观念;推理能力.
【分析】画树状图,共有9种等可能的结果,甲和乙从同一节车厢上车的结果有3种,再由概率公式求解即可.
【解答】解:把3节车厢分别记为A、B、C,
画树状图如图:
共有9种等可能的结果,甲和乙从同一节车厢上车的结果有3种,
∴甲和乙从同一节车厢上车的概率为=,
故选:C.
【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.
6.(2021•湖州)下列事件中,属于不可能事件的是( )
A.经过红绿灯路口,遇到绿灯
B.射击运动员射击一次,命中靶心
C.班里的两名同学,他们的生日是同一天
D.从一个只装有白球和红球的袋中摸球,摸出黄球
【考点】随机事件.菁优网版权所有
【专题】数据的收集与整理;应用意识.
【分析】根据不可能事件的意义,结合具体的问题情境进行判断即可.
【解答】解:A、经过红绿灯路口,遇到绿灯是随机事件,故本选项不符合题意;
B、射击运动员射击一次,命中靶心是随机事件,故本选项不符合题意;
C、班里的两名同学,他们的生日是同一天是随机事件,故本选项不符合题意;
D、从一个只装有白球和红球的袋中摸球,摸出黄球是不可能事件,故本选项符合题意;
故选:D.
【点评】本题考查随机事件,不可能事件,必然事件,理解随机事件,不可能事件,必然事件的意义是正确判断的前提.
7.(2021•绍兴)在一个不透明的袋中装有6个只有颜色不同的球,其中3个红球、2个黄球和1个白球.从袋中任意摸出一个球,是白球的概率为( )
A. B. C. D.
【考点】概率公式.菁优网版权所有
【专题】概率及其应用;数据分析观念.
【分析】用白球的数量除以所有球的数量即可求得白球的概率.
【解答】解:∵袋子中共有6个小球,其中白球有1个,
∴摸出一个球是白球的概率是,
故选:A.
【点评】此题主要考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
8.(2021•嘉兴)5月1日至7日,我市每日最高气温如图所示,则下列说法错误的是( )
A.中位数是33℃
B.众数是33℃
C.平均数是℃
D.4日至5日最高气温下降幅度较大
【考点】算术平均数;中位数;众数.菁优网版权所有
【专题】统计的应用;数据分析观念.
【分析】分别确定7个数据的中位数、众数及平均数后即可确定正确的选项.
【解答】解:A、7个数排序后为23,25,26,27,30,33,33,位于中间位置的数为27,所以中位数为27℃,故A错误,符合题意;
B、7个数据中出现次数最多的为33,所以众数为33℃,正确,不符合题意;
C、平均数为(23+25+26+27+30+33+33)=,正确,不符合题意;
D、观察统计表知:4日至5日最高气温下降幅度较大,正确,不符合题意,
故选:A.
【点评】考查了统计的知识,解题的关键是了解如何确定一组数据的中位数、众数及平均数,难度不大.
9.(2021•丽水)一个布袋里装有3个红球和5个黄球,它们除颜色外其余都相同.从中任意摸出一个球是红球的概率是( )
A. B. C. D.
【考点】概率公式.菁优网版权所有
【专题】概率及其应用;运算能力.
【分析】用红球的个数除以球的总个数即可.
【解答】解:∵布袋里装有3个红球和5个黄球,共有8个球,
∴任意摸出一个球是红球的概率是.
故选:C.
【点评】本题主要考查概率公式,解题的关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.
二.填空题(共9小题)
10.(2021•杭州)现有甲、乙两种糖果的单价与千克数如下表所示.
甲种糖果
乙种糖果
单价(元/千克)
30
20
千克数
2
3
将这2千克甲种糖果和3千克乙种糖果混合成5千克什锦糖果,若商家用加权平均数来确定什锦糖果的单价,则这5千克什锦糖果的单价为 24 元/千克.
【考点】加权平均数.菁优网版权所有
【专题】统计的应用;应用意识.
【分析】将两种糖果的总价算出,用它们的和除以混合后的总重量即可.
【解答】解:这5千克什锦糖果的单价为:(30×2+20×3)÷5=24(元/千克).
故答案为:24.
【点评】本题考查的是加权平均数的求法.本题易出现的错误是求30、20这两个数的平均数,对平均数的理解不正确.
11.(2021•金华)某单位组织抽奖活动,共准备了150张奖券,设一等奖5个,二等奖20个,三等奖80个.已知每张奖券获奖的可能性相同,则1张奖券中一等奖的概率是 .
【考点】概率公式.菁优网版权所有
【专题】概率及其应用;应用意识.
【分析】直接根据概率公式即可得出结论.
【解答】解:∵共有150张奖券,一等奖5个,
∴1张奖券中一等奖的概率==.
故答案为:.
【点评】本题考查的是概率公式,熟知随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数是解答此题的关键.
12.(2021•衢州)为庆祝建党100周年,某校举行“庆百年红歌大赛”.七年级5个班得分分别为85,90,88,95,92,则5个班得分的中位数为 90 分.
【考点】中位数.菁优网版权所有
【专题】统计的应用;数据分析观念.
【分析】将这组数据重新排列,再根据中位数的定义求解即可.
【解答】解:将这5个班的得分重新排列为85、88、90、92、95,
∴5个班得分的中位数为90分,
故答案为:90.
【点评】本题主要考查中位数,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
13.(2021•温州)一个不透明的袋中装有21个只有颜色不同的球,其中5个红球,7个白球,9个黄球.从中任意摸出1个球是红球的概率为 .
【考点】概率公式.菁优网版权所有
【专题】概率及其应用;数据分析观念.
【分析】用红色球的个数除以球的总个数即可得出答案.
【解答】解:∵一共有21个只有颜色不同的球,其中红球有5个,
∴从中任意摸出1个球是红球的概率为,
故答案为:.
【点评】本题主要考查概率公式,解题的关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.
14.(2021•台州)一个不透明布袋中有2个红球,1个白球,这些球除颜色外无其他差别,从中随机摸出一个小球,该小球是红色的概率为 .
【考点】概率公式.菁优网版权所有
【专题】概率及其应用;数据分析观念.
【分析】直接根据概率公式求解.
【解答】解:从中随机摸出一个小球,恰好是红球的概率P==.
故答案为:.
【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.
15.(2021•宁波)一个不透明的袋子里装有3个红球和5个黑球,它们除颜色外其余都相同.从袋中任意摸出一个球是红球的概率为 .
【考点】概率公式.菁优网版权所有
【专题】概率及其应用;数据分析观念.
【分析】先求出球的总个数,再根据概率公式即可得出摸出一个球是红球的概率.
【解答】解:∵一个不透明的袋子里装有3个红球和5个黑球,
∴共有8个球,
∴从袋中任意摸出一个球是红球的概率为.
故答案为:.
【点评】本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.
16.(2021•丽水)根据第七次全国人口普查,华东A,B,C,D,E,F六省60岁及以上人口占比情况如图所示,这六省60岁及以上人口占比的中位数是 18.75% .
【考点】中位数.菁优网版权所有
【专题】统计的应用;运算能力.
【分析】根据中位数的定义直接求解即可.
【解答】解:把这些数从小大排列为:16.0%,16.9%,18.7%,18.8%,20.9%,21.8%,
则中位数是=18.75%.
故答案为:18.75%.
【点评】本题考查了中位数的概念:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
17.(2021•湖州)某商场举办有奖销售活动,每张奖券被抽中的可能性相同,若以每1000张奖券为一个开奖单位,设5个一等奖,15个二等奖,不设其他奖项,则只抽1张奖券恰好中奖的概率是 .
【考点】概率公式.菁优网版权所有
【专题】概率及其应用;运算能力.
【分析】根据概率公式直接求解即可.
【解答】解:只抽1张奖券恰好中奖的概率是=.
故答案为:.
【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.P(必然事件)=1;P(不可能事件)=0.
18.(2021•嘉兴)看了《田忌赛马》故事后,小杨用数学模型来分析:齐王与田忌的上中下三个等级的三匹马记分如表,每匹马只赛一场,两数相比,大数为胜,三场两胜则赢.已知齐王的三匹马出场顺序为10,8,6.若田忌的三匹马随机出场,则田忌能赢得比赛的概率为 .
马匹
姓名
下等马
中等马
上等马
齐王
6
8
10
田忌
5
7
9
【考点】列表法与树状图法.菁优网版权所有
【专题】概率及其应用;数据分析观念;推理能力.
【分析】列表得出所有等可能的情况,田忌能赢得比赛的情况有1种,再由概率公式求解即可.
【解答】解:由于田忌的上、中等马分别比齐王的中、下等马强,当齐王的三匹马出场顺序为10,8,6时,田忌的马按5,9,7的顺序出场,田忌才能赢得比赛,
当田忌的三匹马随机出场时,双方马的对阵情况如下:
双方马的对阵中,只有一种对阵情况田忌能赢,
∴田忌能赢得比赛的概率为.
故答案为:.
【点评】本题考查了利用列表法或树状图法求概率;用到的知识点为:概率=所求情况数与总情况数之比.
三.解答题(共10小题)
19.(2021•嘉兴)某市为了解八年级学生视力健康状况,在全市随机抽查了400名八年级学生2021年初的视力数据,并调取该批学生2020年初的视力数据,制成如图统计图(不完整):
青少年视力健康标准
类别
视力
健康状况
A
视力≥5.0
视力正常
B
4.9
轻度视力不良
C
4.6≤视力≤4.8
中度视力不良
D
视力≤4.5
重度视力不良
根据以上信息,请解答:
(1)分别求出被抽查的400名学生2021年初轻度视力不良(类别B)的扇形圆心角度数和2020年初视力正常(类别A)的人数.
(2)若2021年初该市有八年级学生2万人,请估计这些学生2021年初视力正常的人数比2020年初增加了多少人?
(3)国家卫健委要求,全国初中生视力不良率控制在69%以内.请估计该市八年级学生2021年初视力不良率是否符合要求?并说明理由.
【考点】用样本估计总体;统计表;扇形统计图.菁优网版权所有
【专题】数据的收集与整理;统计的应用;运算能力;应用意识.
【分析】(1)利用2021年初视力不良的百分比乘360°即可求解.
(2)分别求出2021、2020年初视力正常的人数即可求解.
(3)用1﹣31.25%即可得该市八年级学生2021年视力不良率,即可判断.
【解答】解:(1)被抽查的400名学生2021年初轻度视力不良的扇形圆心角度数=360°×(1﹣31.25%﹣24.5%﹣32%)=44.1°.
该批400名学生2020年初视力正常人数=400﹣48﹣91﹣148=113(人).
(2)该市八年级学生2021年初视力正常人数=20000×31.25%=6250(人).
这些学生2020年初视力正常的人数=(人).
∴估计增加的人数=6250﹣5650=600(人).
∴该市八年级学生2021年初视力正常的人数比2020年初增加了600人.
(3)该市八年级学生2021年视力不良率=1﹣31.25%=68.75%.
∵68.75%<69%.
∴该市八年级学生2021年初视力不良率符合要求.
【点评】本题考查扇形统计图、统计表的知识,关键在于计算的准确性.
20.(2021•衢州)为进一步做好“光盘行动”,某校食堂推出“半份菜”服务,在试行阶段,食堂对师生满意度进行抽样调查.并将结果绘制成如下统计图(不完整).
(1)求被调查的师生人数,并补全条形统计图.
(2)求扇形统计图中表示“满意”的扇形圆心角度数.
(3)若该校共有师生1800名,根据抽样结果,试估计该校对食堂“半份菜”服务“很满意”或“满意”的师生总人数.
【考点】全面调查与抽样调查;用样本估计总体;扇形统计图;条形统计图.菁优网版权所有
【专题】统计的应用;应用意识.
【分析】(1)根据“很满意”的人数和所占的百分比,求出被调查的师生人数,再用总人数减去其它组的人数,求出“不满意”的人数,从而补全统计图;
(2)用360°乘以“满意”所占的百分比即可;
(3)用该校共有师生人数乘以“很满意”或“满意”所占的百分比即可.
【解答】解:(1)被调查的师生人数是:120÷60%=200(人),
“不满意”的人数有:200﹣120﹣70=10(人),
补充条形统计图如图:
(2)扇扇形统计图中表示“满意”的扇形圆心角度数为×360°=126°;
(3)1800×=1710(人).
答:估计该校对食堂“半份菜”服务“很满意”或“满意”的师生总人数为1710人.
【点评】本题考查了条形统计图、扇形统计图以及用样本估计总体,观察条形统计图及扇形统计图,找出各数据,再利用各数量间的关系列式计算是解题的关键.
21.(2021•金华)小聪、小明准备代表班级参加学校“党史知识”竞赛,班主任对这两名同学测试了6次,获得如图测试成绩折线统计图.根据图中信息,解答下列问题:
(1)要评价每位同学成绩的平均水平,你选择什么统计量?求这个统计量.
(2)求小聪成绩的方差.
(3)现求得小明成绩的方差为S小明2=3(单位:平方分).根据折线统计图及上面两小题的计算,你认为哪位同学的成绩较好?请简述理由.
【考点】折线统计图;加权平均数;方差;统计量的选择.菁优网版权所有
【专题】统计的应用;应用意识.
【分析】(1)要评价每位同学成绩的平均水平,选择平均数即可,根据平均数的定义计算出两人的平均数即可;
(2)根据方差的计算方法计算即可;
(3)由(1)可知两人的平均数相同,由方差可知小聪的成绩波动较小,所以方差较小,成绩相对稳定.
【解答】解:(1)要评价每位同学成绩的平均水平,选择平均数即可,
小聪成绩的平均数:(7+8+7+10+7+9)=8(分),
小明成绩的平均数:(7+6+6+9+10+10)=8(分),
答:应选择平均数,小聪、小明的平均数分别是8分,8分;
(2)小聪成绩的方差为:[(7﹣8)2+(8﹣8)2+(7﹣8)2+(10﹣8)2+(7﹣8)2+(9﹣8)2]=(平方分);
(3)小聪同学的成绩较好,
理由:由(1)可知两人的平均数相同,因为小聪成绩的方差小于小明成绩的方差,成绩相对稳定.故小聪同学的成绩较好.
【点评】本题考查平均数、方差,折线统计图,解答本题的关键是明确题意,找出所求问题需要的条件,会计算一组数据的平均数和方差.
22.(2021•绍兴)绍兴莲花落,又称“莲花乐”,“莲花闹”,是绍兴一带的曲艺.为了解学生对该曲种的熟悉度,某校设置了:非常了解、了解、了解很少、不了解四个选项,随机抽查了部分学生进行问卷调查,要求每名学生只选其中的一项,并将抽查结果绘制成不完整的统计图.
根据图中信息,解答下列问题:
(1)本次接受问卷调查的学生有多少人?并求图2中“了解”的扇形圆心角的度数;
(2)全校共有1200名学生,请你估计全校学生中“非常了解”、“了解”莲花落的学生共有多少人.
【考点】用样本估计总体;扇形统计图;条形统计图.菁优网版权所有
【专题】统计的应用;应用意识.
【分析】(1)从两个统计图中可知,在抽查人数中,“非常了解”的人数为30人,占调查人数的15%,可求出接受问卷调查的学生数,进而求出“了解”所占比例,即可得出“了解”的扇形圆心角的度数;
(2)样本中“非常了解”、“了解”的占调查人数的,进而估计总体中“非常了解”和“了解”的人数.
【解答】解:(1)接受问卷调查的学生数:30÷15%=200(人),
“了解”的扇形圆心角度数为360°×=126°;
答:本次接受问卷调查的学生有200人,图2中“了解”的扇形圆心角的度数为126°;
(2)1200×=600(人),
答:估计全校学生中“非常了解”、“了解”莲花落的学生共有600人.
【点评】本题考查扇形统计图、条形统计图的意义,从统计图中获取数量和数量之间的关系,是解决问题的前提,样本估计总体是统计中常用的方法.
23.(2021•台州)杨梅果实成熟期正值梅雨季节,雨水过量会导致杨梅树大量落果,给果农造成损失.为此,市农科所开展了用防雨布保护杨梅果实的实验研究.在某杨梅果园随机选择40棵杨梅树,其中20棵加装防雨布(甲组),另外20棵不加装防雨布(乙组).在杨梅成熟期,统计了甲、乙两组中每一棵杨梅树的落果率(落地的杨梅颗数占树上原有杨梅颗数的百分比),绘制成统计图表(数据分组包含左端值不包含右端值).
甲组杨梅树落果率频数分布表
落果率
组中值
频数(棵)
0≤x<10%
5%
12
10%≤x<20%
15%
4
20%≤x<30%
25%
2
30%≤x<40%
35%
1
40%≤x<50%
45%
1
(1)甲、乙两组分别有几棵杨梅树的落果率低于20%?
(2)请用落果率的中位数或平均数,评价市农科所“用防雨布保护杨梅果实”的实际效果;
(3)若该果园的杨梅树全部加装这种防雨布,落果率可降低多少?说出你的推断依据.
【考点】频数(率)分布表;频数(率)分布直方图;加权平均数;中位数.菁优网版权所有
【专题】概率及其应用;应用意识.
【分析】(1)根据分布表和条形统计图即可得出甲、乙两组分别有几棵杨梅树的落果率低于20%;
(2)分别计算甲、乙两组落果率的中位数或平均数,评价实际效果;
(3)对比甲组比乙组杨梅树的落果率降低多少做出推断即可.
【解答】解:(1)由甲组杨梅树落果率频数分布表知,
甲组杨梅树的落果率低于20%的有:12+4=16(棵),
由乙组杨梅树落果率频数分布直方图知,
乙组杨梅树的落果率低于20%的有:1+1=2(棵);
(2)甲组落果率的中位数位于0~10%之间,乙组落果率的中位数是30%~40%之间,
可见甲组的落果率远小于乙组,
∴市农科所“用防雨布保护杨梅果实”确实有效果;
(3)甲组落果率的平均数为:(12×5%+4×15%+2×25%+1×35%+1×45%)÷20=12.5%,
乙组落果率的平均数为:(1×5%+1×15%+3×25%+10×35%+5×45%)÷20=33.5%,(甲组取中值,乙组也取中值)
33.5%﹣12.5%=21%,
∴落果率可降低21%.
【点评】本题主要考查平均数,中位数,频率分布表和频率分布直方图等知识点,熟练掌握平均数和中位数等知识点是解题的关键.
24.(2021•杭州)为了解某校某年级学生一分钟跳绳情况,对该年级全部360名学生进行一分钟跳绳次数的测试,并把测得数据分成四组,绘制成如图所示的频数表和未完成的频数分布直方图(每一组不含前一个边界值,含后一个边界值).
某校某年级360名学生一分钟跳绳次数的频数表
组别(次)
频数
100~130
48
130~160
96
160~190
a
190~220
72
(1)求a的值;
(2)把频数分布直方图补充完整;
(3)求该年级一分钟跳绳次数在190次以上的学生数占该年级全部学生数的百分比.
【考点】频数(率)分布表;频数(率)分布直方图.菁优网版权所有
【专题】统计的应用;数据分析观念.
【分析】(1)用360减去第1、2、4组的频数和即可;
(2)根据以上所求结果即可补全图形;
(3)用第4组的频数除以该年级的总人数即可得出答案.
【解答】解:(1)a=360﹣(48+96+72)=144;
(2)补全频数分布直方图如下:
(3)该年级一分钟跳绳次数在190次以上的学生数占该年级全部学生数的百分比为×100%=20%.
【点评】本题考查频数(率)分布直方图,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
25.(2021•温州)某校将学生体质健康测试成绩分为A,B,C,D四个等级,依次记为4分,3分,2分,1分.为了解学生整体体质健康状况,拟抽样进行统计分析.
(1)以下是两位同学关于抽样方案的对话:
小红:“我想随机抽取七年级男、女生各60人的成绩.”
小明:“我想随机抽取七、八、九年级男生各40人的成绩.”
根据如图学校信息,请你简要评价小红、小明的抽样方案.
如果你来抽取120名学生的测试成绩,请给出抽样方案.
(2)现将随机抽取的测试成绩整理并绘制成如图统计图,请求出这组数据的平均数、中位数和众数.
【考点】抽样调查的可靠性;加权平均数;中位数;众数.菁优网版权所有
【专题】统计的应用;数据分析观念.
【分析】(1)根据小红和小明抽样的特点进行分析评价即可;
(2)根据中位数、众数的意义求解即可.
【解答】解:(1)两人都能根据学校信息合理选择样本容量进行抽样调查,小红的方案考虑到性别的差异,但没有考虑年级学段的差异,小明的方案考虑到了年级特点,但没有考虑到性别的差异,他们抽样调查不具有广泛性和代表性;如果让我来抽取120名学生的测试成绩,应该随机抽取七、八、九年级男生、女生各20名的体质健康测试成绩.
(2)平均数为=2.75(分),
抽查的120人中,成绩是3分出现的次数最多,共出现45次,因此众数是3分,
将这120人的得分从小到大排列处在中间位置的两个数都是3分,因此中位数是3分,
答:这组数据的平均数是2.75分、中位数是3分,众数是3分.
【点评】本题考查中位数、众数、平均数,掌握平均数、中位数、众数的计算方法是正确解答的前提.
26.(2021•宁波)图1表示的是某书店今年1~5月的各月营业总额的情况,图2表示的是该书店“党史”类书籍的各月营业额占书店当月营业总额的百分比情况.若该书店1~5月的营业总额一共是182万元,观察图1、图2,解答下列问题:
(1)求该书店4月份的营业总额,并补全条形统计图.
(2)求5月份“党史”类书籍的营业额.
(3)请你判断这5个月中哪个月“党史”类书籍的营业额最高,并说明理由.
【考点】条形统计图;折线统计图.菁优网版权所有
【专题】统计的应用;运算能力.
【分析】(1)用1~5月的营业总额减去其他月份的总额,求出4月份的营业额,从而补全统计图;
(2)用5月份的营业额乘以“党史”类书籍所占的百分比即可;
(3)先判断出1﹣3月份的营业总额以及“党史”类书籍的营业额占当月营业额的百分比都低于4、5月份,再求出4月份的“党史”类书籍的营业额,与5月份进行比较,即可得出答案.
【解答】解:(1)该书店4月份的营业总额是:182﹣(30+40+25+42)=45(万元),
补全统计图如下:
(2)42×25%=10.5(万元),
答:5月份“党史”类书籍的营业额是10.5万元;
(3)4月份“党史”类书籍的营业额是45×20%=9(万元),
∵10.5>9,且1﹣3月份的营业总额以及“党史”类书籍的营业额占当月营业额的百分比都低于4、5月份,
∴5月份“党史”类书籍的营业额最高.
【点评】本题考查的是条形统计图和折线统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据,如粮食产量,折线统计图表示的是事物的变化情况,如增长率.
27.(2021•丽水)在创建“浙江省健康促进学校”的过程中,某数学兴趣小组针对视力情况随机抽取本校部分学生进行调查,并按照国家分类标准统计人数,绘制成两幅不完整的统计图表,请根据图表信息解答下列问题:
抽取的学生视力情况统计表
类别
检查结果
人数
A
正常
88
B
轻度近视
▲
C
中度近视
59
D
重度近视
▲
(1)求所抽取的学生总人数;
(2)该校共有学生约1800人,请估算该校学生中,近视程度为中度和重度的总人数;
(3)请结合上述统计数据,为该校做好近视防控,促进学生健康发展提出一条合理的建议.
【考点】用样本估计总体;统计表;扇形统计图.菁优网版权所有
【专题】统计的应用;运算能力.
【分析】(1)从所取样本中根据正常的人数和所占比例求出样本总数;
(2))由扇形统计图可直接求近视程度为中度和重度的总人数;
(3)根据数据提出一条建议即可.
【解答】解:(1)抽取的学生总人数是:88÷44%=200(人),
答:所抽取的学生总人数为200人;
(2)由扇形统计图可得,近视程度为中度和重度的总人数为:
1800×(1﹣11%﹣44%)=1800×45%=810(人).
答:在该校1800人学生中,估计近视程度为中度和重度的总人数是810人;
(3)答案不唯一,例如:该校学生近视程度为中度及以上占45%,说明该校学生近视程度较为严重,建议学校加强电子产品进校园及使用的管控.
【点评】本题考查扇形统计图、统计表以及用样本估计总体等知识,关键是从扇形统计图和统计表中找出相应的数据.
28.(2021•湖州)为了更好地了解党的历史,宣传党的知识,传颂英雄事迹,某校团支部组建了:A.党史宣讲;B.歌曲演唱;C.校刊编撰;D.诗歌创作等四个小组,团支部将各组人数情况制成了统计图表(不完整).
各组参加人数情况统计表
小组类别
A
B
C
D
人数(人)
10
a
15
5
根据统计图表中的信息,解答下列问题:
(1)求a和m的值;
(2)求扇形统计图中D所对应的圆心角度数;
(3)若在某一周各小组平均每人参与活动的时间如下表所示:
小组类别
A
B
C
D
平均用时(小时)
2.5
3
2
3
求这一周四个小组所有成员平均每人参与活动的时间.
【考点】扇形统计图;加权平均数.菁优网版权所有
【专题】数据的收集与整理;数据分析观念.
【分析】(1)根据C组人数和百分比可以求出四个小组所有成员总人数,进而可得a和m的值;
(2)先求出D的百分比再乘以360度,即可求扇形统计图中D所对应的圆心角度数;
(3)根据加权平均数的公式即可求出各小组平均每人参与活动的时间.
【解答】解:(1)由题意可知:四个小组所有成员总人数是15÷30%=50(人),
∴a=50﹣10﹣15﹣5=20,
∵m%=10÷50×100%=20%,
∴m=20;
(2)∵5÷50×360°=36°,
∴扇形统计图中D所对应的圆心角度数为36°;
(3)∵=×(10×2.5+20×3+15×2+5×3)=2.6(小时),
∴这一周四个小组所有成员平均每人参与活动的时间是2.6小时.
【点评】本题考查了扇形统计图,加权平均数,解决本题的关键是掌握扇形统计图.
考点卡片
1.全面调查与抽样调查
1、统计调查的方法有全面调查(即普查)和抽样调查.
2、全面调查与抽样调查的优缺点:①全面调查收集的到数据全面、准确,但一般花费多、耗时长,而且某些调查不宜用全面调查.②抽样调查具有花费少、省时的特点,但抽取的样本是否具有代表性,直接关系到对总体估计的准确程度.
3、如何选择调查方法要根据具体情况而定.一般来讲:通过普查可以直接得到较为全面、可靠的信息,但花费的时间较长,耗费大,且一些调查项目并不适合普查.其一,调查者能力有限,不能进行普查.如:个体调查者无法对全国中小学生身高情况进行普查.其二,调查过程带有破坏性.如:调查一批灯泡的使用寿命就只能采取抽样调查,而不能将整批灯泡全部用于实验.其三,有些被调查的对象无法进行普查.如:某一天,全国人均讲话的次数,便无法进行普查.
2.抽样调查的可靠性
(1)抽样调查是实际中经常采用的调查方式.
(2)如果抽取的样本得当,就能很好地反映总体的情况,否则抽样调查的结果会偏离总体情况.
(3)抽样调查除了具有花费少,省时的特点外,还适用一些不宜使用全面调查的情况(如具有破坏性的调查).
(4)分层抽样获取的样本与直接进行简单的随机抽样相比一般能更好地反映总体.其特点是:通过划类分层,增大了各类型中单位间的共同性,容易抽出具有代表性的调查样本,该方法适用于总体情况复杂,各单位之间差异较大,单位较多的情况.
3.用样本估计总体
用样本估计总体是统计的基本思想.
1、用样本的频率分布估计总体分布:
从一个总体得到一个包含大量数据的样本,我们很难从一个个数字中直接看出样本所包含的信息.这时,我们用频率分布直方图来表示相应样本的频率分布,从而去估计总体的分布情况.
2、用样本的数字特征估计总体的数字特征(主要数据有众数、中位数、平均数、标准差与方差 ).
一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.
4.频数(率)分布表
1、在统计数据时,经常把数据按照不同的范围分成几个组,分成的组的个数称为组数,每一组两个端点的差称为组距,称这样画出的统计图表为频数分布表.
2、列频率分布表的步骤:
(1)计算极差,即计算最大值与最小值的差.
(2)决定组距与组数(组数与样本容量有关,一般来说样本容量越大,分组就越多,样本容量不超过100时,按数据的多少,常分成5~12组).
(3)将数据分组.
(4)列频率分布表.
5.频数(率)分布直方图
画频率分布直方图的步骤:
(1)计算极差,即计算最大值与最小值的差.(2)决定组距与组数(组数与样本容量有关,一般来说样本容量越大,分组就越多,样本容量不超过100时,按数据的多少,常分成5~12组).(3)确定分点,将数据分组.(4)列频率分布表.(5)绘制频率分布直方图.
注:①频率分布表列出的是在各个不同区间内取值的频率,频率分布直方图是用小长方形面积的大小来表示在各个区间内取值的频率.直角坐标系中的纵轴表示频率与组距的比值,即小长方形面积=组距×=频率.②各组频率的和等于1,即所有长方形面积的和等于1.③频率分布表在数量表示上比较确切,但不够直观、形象,不利于分析数据分布的总体态势.④从频率分布直方图可以清楚地看出数据分布的总体态势,但是从直方图本身得不出原始的数据内容.
6.统计表
统计表可以将大量数据的分类结果清晰,一目了然地表达出来.
统计调查所得的原始资料,经过整理,得到说明社会现象及其发展过程的数据,把这些数据按一定的顺序排列在表格中,就形成“统计表”.统计表是表现数字资料整理结果的最常用的一种表格. 统计表是由纵横交叉线条所绘制的表格来表现统计资料的一种形式.
7.扇形统计图
(1)扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.
(2)扇形图的特点:从扇形图上可以清楚地看出各部分数量和总数量之间的关系.
(3)制作扇形图的步骤
①根据有关数据先算出各部分在总体中所占的百分数,再算出各部分圆心角的度数,公式是各部分扇形圆心角的度数=部分占总体的百分比×360°. ②按比例取适当半径画一个圆;按扇形圆心角的度数用量角器在圆内量出各个扇形的圆心角的度数;
④在各扇形内写上相应的名称及百分数,并用不同的标记把各扇形区分开来.
8.条形统计图
(1)定义:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.
(2)特点:从条形图可以很容易看出数据的大小,便于比较.
(3)制作条形图的一般步骤:
①根据图纸的大小,画出两条互相垂直的射线.
②在水平射线上,适当分配条形的位置,确定直条的宽度和间隔.
③在与水平射线垂直的射线上,根据数据大小的具体情况,确定单位长度表示多少.
④按照数据大小,画出长短不同的直条,并注明数量.
9.折线统计图
(1)定义:折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来.以折线的上升或下降来表示统计数量增减变化.
(2)特点:折线图不但可以表示出数量的多少,而且能够清楚地表示出数量的增减变化情况.
(3)绘制折线图的步骤
①根据统计资料整理数据.
②先画纵轴,后画横轴,纵、横都要有单位,按纸面的大小来确定用一定单位表示一定的数量. ③根据数量的多少,在纵、横轴的恰当位置描出各点,然后把各点用线段顺序连接起来.
10.算术平均数
(1)平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.
(2)算术平均数:对于n个数x1,x2,…,xn,则=(x1+x2+…+xn)就叫做这n个数的算术平均数.
(3)算术平均数是加权平均数的一种特殊情况,加权平均数包含算术平均数,当加权平均数中的权相等时,就是算术平均数.
11.加权平均数
(1)加权平均数:若n个数x1,x2,x3,…,xn的权分别是w1,w2,w3,…,wn,则x1w1+x2w2+…+xnwnw1+w2+…+wn叫做这n个数的加权平均数.
(2)权的表现形式,一种是比的形式,如4:3:2,另一种是百分比的形式,如创新占50%,综合知识占30%,语言占20%,权的大小直接影响结果.
(3)数据的权能够反映数据的相对“重要程度”,要突出某个数据,只需要给它较大的“权”,权的差异对结果会产生直接的影响.
(4)对于一组不同权重的数据,加权平均数更能反映数据的真实信息.
12.中位数
(1)中位数:
将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.
如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
(2)中位数代表了这组数据值大小的“中点”,不易受极端值影响,但不能充分利用所有数据的信息.
(3)中位数仅与数据的排列位置有关,某些数据的移动对中位数没有影响,中位数可能出现在所给数据中也可能不在所给的数据中出现,当一组数据中的个别数据变动较大时,可用中位数描述其趋势.
13.众数
(1)一组数据中出现次数最多的数据叫做众数.
(2)求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.
(3)众数不易受数据中极端值的影响.众数也是数据的一种代表数,反映了一组数据的集中程度,众数可作为描述一组数据集中趋势的量..
14.方差
(1)方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.
(2)用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果叫方差,通常用s2来表示,计算公式是:
s2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2](可简单记忆为“方差等于差方的平均数”)
(3)方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.
15.统计量的选择
(1)一般而言,一组数据的极差、方差或标准差越小,这组数据就越稳定.但这并不是绝对的,有时多数数据相对集中,整体波动水平较小,但个别数据的偏离仍可能极大地影响极差、方差或标准差的值.从而导致这些量度数值较大,因此在实际应用中应根据具体问题情景进行具体分析,选用适当的量度刻画数据的波动情况,一般来说,只有在两组数据的平均数相等或比较接近时,才用极差、方差或标准差来比较两组数据的波动大小.
(2)平均数、众数、中位数和极差、方差在描述数据时的区别:①数据的平均数、众数、中位数是描述一组数据集中趋势的特征量,极差、方差是衡量一组数据偏离其平均数的大小(即波动大小)的特征数,描述了数据的离散程度.②极差和方差的不同点:极差表示一组数据波动范围的大小,一组数据极差越大,则它的波动范围越大;方差和标准差反映了一组数据与其平均值的离散程度的大小.方差(或标准差)越大,数据的历算程度越大,稳定性越小;反之,则离散程度越小,稳定性越好.
16.随机事件
(1)确定事件
事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定的.
(2)随机事件
在一定条件下,可能发生也可能不发生的事件,称为随机事件.
(3)事件分为确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件,其中,
①必然事件发生的概率为1,即P(必然事件)=1;
②不可能事件发生的概率为0,即P(不可能事件)=0;
③如果A为不确定事件(随机事件),那么0<P(A)<1.
17.概率公式
(1)随机事件A的概率P(A)=.
(2)P(必然事件)=1.
(3)P(不可能事件)=0.
18.列表法与树状图法
(1)当试验中存在两个元素且出现的所有可能的结果较多时,我们常用列表的方式,列出所有可能的结果,再求出概率.
(2)列表的目的在于不重不漏地列举出所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.
(3)列举法(树形图法)求概率的关键在于列举出所有可能的结果,列表法是一种,但当一个事件涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树形图.
(4)树形图列举法一般是选择一个元素再和其他元素分别组合,依次列出,象树的枝丫形式,最末端的枝丫个数就是总的可能的结果n.
(5)当有两个元素时,可用树形图列举,也可以列表列举.
声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布
日期:2021/8/3 14:18:51;用户:总部9;邮箱:zybzb9@xyh.com;学号:40292140
2022年中考数学真题分类汇编之统计与概率及真题答案: 这是一份2022年中考数学真题分类汇编之统计与概率及真题答案,共27页。
2017-2021年山东中考数学真题分类汇编之统计与概率: 这是一份2017-2021年山东中考数学真题分类汇编之统计与概率,共32页。
2017-2021年广东中考数学真题分类汇编之统计与概率: 这是一份2017-2021年广东中考数学真题分类汇编之统计与概率,共24页。