开学活动
搜索
    上传资料 赚现金
    英语朗读宝

    2021届二轮(理科数学) 解析几何 专题卷(全国通用)

    2021届二轮(理科数学)    解析几何          专题卷(全国通用)第1页
    2021届二轮(理科数学)    解析几何          专题卷(全国通用)第2页
    2021届二轮(理科数学)    解析几何          专题卷(全国通用)第3页
    还剩6页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021届二轮(理科数学) 解析几何 专题卷(全国通用)

    展开

     2021届二轮(理科数学)  解析几何     专题卷(全国通用)一、选择题(本大题共12小题,每小题5分,共60分)1、已知直线的方程是, 的方程是(,则下列各示意图中,正确的是 (    )2、已知直线,则直线的倾斜角为A. B.     C.     D. 3、若直线过点(11),(2),则此直线的倾斜角的大小为A. 30°   B. 45°   C. 60°   D. 90°4、若点P(3,-1)为圆的弦AB的中点,则直线AB 的方程是           .5、已知,且满足,则 的最小值为 (    A.     B.     C.     D. 6、过点和点的直线的倾斜角是(  )                                7、 直线过点且与直线垂直,则的方程是(   A.     B. C.     D. 8、已知直线与直线互相垂直,则=_______.9、已知M是圆C:(x-1)2+y2=1上的点,N是圆C′:(x-4)2+(y-4)2=82上的点,则|MN|的最小值为A. 4    B. 4-1C. 2-2    D. 210、已知为函数的图像上任意一点,过作直线分别与圆相切于两点,则原点到直线的距离的最大值为(   A.     B.     C.     D. 11、在平面直角坐标系中,定义为两点,之间的“折线距离”. 若为坐标原点,则与直线上一点的“折线距离”的最小值是  A.     B.      C.2     D. 412、37.已知球的半径为2,相互垂直的两个平面分别截球面得两个圆.若两圆的公共弦长为2,则两圆的圆心距等于A. 1    B.     C.     D. 2二、填空题(本大题共4小题,每小题5分,共20分)13、若动点AB分别在直线l1xy70l2xy50上移动,则AB的中点M到原点的距离的最小值为______14、已知⊙Ox2y2=1,若直线ykx+2上总存在点P,使得过点P的⊙O的两条切线互相垂直,则实数k的取值范围是________15、半径为1的球面上有三点A.B、C,其中A与B、C两点间的球面距离均为,B、C两点间的球面距离为,则球心到平面ABC的距离为           16、若直线的一个交点为,则它们的另一个交点的坐标是_____.三、解答题(本大题共6小题,共70分)17、(本小题满分10分)已知三A(13)B(511)C(3,-5),求证:这三点在同一条直线上.18、(本小题满分12分)如图在OABC中,O为坐标原点,点C(13)(1)OC所在直线的斜率;(2)CCDABD,求直线CD的斜率.19、(本小题满分12分)已知直线.(1)若,求的值;(2)若,求的值.20、(本小题满分12分)已知一个圆和直线相切于点,且半径为,求这个圆的方程.21、(本小题满分12分)已知圆C:x2+y2+2x-4y+3=0,(1)若圆C的切线l在x轴、y轴上的截距相等,求切线l的方程;(2)若点是圆C上的动点,求的取值范围.22、(本小题满分12分)求圆心在直线上,且与轴相切,在轴上截得的弦长为的圆的方程.
    参考答案1、答案D2、答案C3、答案C4、答案5、答案C为直线上的动点, 为直线上的动点,可理解为两动点间距离的最小值,显然最小值即两平行线间的距离: .故选:C6、答案D7、答案A详解:因为直线与直线垂直,所以的斜率为因为的方程是选A.8、答案时,两直线的方程分别为故两直线垂直;②当时,两直线的斜率分别为由题意得解得综上可得整理得答案9、答案D因为圆的圆心为,半径为因为圆的圆心为,半径为因为,所以两圆内切,则的最小值为;故选D.10、答案B详解:设.为直径的圆的方程为,即.为圆与圆的公共弦两圆作差可得直线的方程为到直线的距离为,当且仅当,即时取等号.原点到直线的距离的最大值为故选B.11、答案A12、答案C设两个圆的圆心分别为,球心为,公共弦长为其中点为,则为矩形,于是对角线,故选C.13、答案3依题意知AB的中点M的集合为与直线l1xy70l2xy50距离都相等的直线M到原点的距离的最小值为原点到该直线的距离设点M所在直线的方程为lxym0根据平行线间的距离公式得  |m7||m5|  m=-6l的方程为xy60根据点到直线的距离公式M到原点的距离的最小值为3.14、答案圆心为O(0,0),半径R=1.设两个切点分别为A、B,则由题意可得四边形PAOB为正方形,故有PO=R=圆心O到直线y=kx+2的距离d即1+k22,解得k1或k≤﹣1,故答案为:(﹣∞,﹣1]∪[1,+∞)15、答案16、答案,得,求得的另一交点17、答案证明:由斜率公式,得kAB2kAC2kABkAC,且ABAC都过点A直线ABAC斜率相同,且过同一点AABC这三点在同一条直线上.18、答案(1)O(00)C(13)OC所在直线的斜率kOC3(2)OABC中,ABOCCDAB,∴CDOCkOC·kCD=-1kCD=-.故直线CD的斜率为-.19、答案(1);(2)(2)利用两直线平行的条件,结合两条直线的方程可得,由此求得得m的值.详解(1)∵直线l1:x+my+6=0,l2:(m﹣2)x+3y+2m=0,由l1⊥l2,可得1×(m﹣2)+m×3=0,解得(2)由题意可知m不等于0,由l1∥l2可得,解得m=﹣1.20、答案详解设圆心坐标为则圆的方程为在圆上,解方程组故所求圆的方程是.21、答案(1)y=(2±)xx+y+1=0或x+y-3=0.(2).(2)问题转化为直线与圆C有公共点.详解(1)由方程x2+y2+2x-4y+3=0知圆心为(-1,2),半径为.当切线过原点时,设切线l方程为y=kx,则,k=2±,即切线l方程为y=(2±)x.当切线不过原点时,设切线l方程为x+y=a,.a=-1或a=3,即切线l方程为x+y+1=0或x+y-3=0.切线l方程为y=(2±)xx+y+1=0或x+y-3=0.(2)由题意可知,直线与圆C有公共点,所以圆心(-1,2)到直线的距离,,所以,的取值范围是.22、答案详解:设圆心坐标为:,半径为,解得:圆心坐标为:圆的方程为 

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map