开学活动
搜索
    上传资料 赚现金

    【数学】山东省青岛市胶州市2019-2020学年高二下学期期中学业水平检测试题

    【数学】山东省青岛市胶州市2019-2020学年高二下学期期中学业水平检测试题第1页
    【数学】山东省青岛市胶州市2019-2020学年高二下学期期中学业水平检测试题第2页
    【数学】山东省青岛市胶州市2019-2020学年高二下学期期中学业水平检测试题第3页
    还剩10页未读, 继续阅读
    下载需要15学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    【数学】山东省青岛市胶州市2019-2020学年高二下学期期中学业水平检测试题

    展开

    山东省青岛市胶州市2019-2020学年高二下学期期中学业水平检测试题本试卷6页,22小题,满分150分.考试用时120分钟.   注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上,并将条形码粘贴在答题卡指定位置上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。3.考试结束后,请将答题卡上交。一、单项选择题:本大题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。1某物体的运动方程为其中位移的单位是米,时间的单位是秒,那么该物体在秒末的瞬时速度大小是(                       A/ B/ C/ D/ 2命题函数是偶函数的否定可表示为(     A  B  C D 3在下列区间上函数单调递减的是(        A B C D4若复数为虚数单位,则为纯虚数的(    A充分不必要条件  B.必要不充分条件 C.充要条件         D.既不充分也不必要条件5已知函数的图象如图所示,则可以为(     A  B  C  D6分别独立的扔一枚骰子和硬币,并记下骰子向上的点数和硬币朝上的面,则结果中含有或正面向上的概率为(    A B C D7由于受到网络电商的冲击,某品牌的洗衣机在线下的销售受到影响,承受了一定的经济损失,现将地区家实体店该品牌洗衣机的月经济损失统计如图所示估算月经济损失的平均数为,中位数为,则          A B C D8在直角坐标系中,曲线与圆的公共点个数为(     A B C D二、多项选择题:本大题共4小题,每小题5分,共20分。在每小题给出的四个选项中,有多项符合题目要求。全部选对的得5分,部分选对的得3分,有选错的得0分。9随机变量服从正态分布,则下述正确的是(     A  B  C D10若复数满足(其中是虚数单位),复数的共轭复数为,则(     A  B的实部是  C的虚部是  D.复数在复平面内对应的点在第一象限11某市坚持农业与旅游融合发展,着力做好旅游各要素,完善旅游业态,提升旅游接待能力。为了给游客提供更好的服务,旅游部门需要了解游客人数的变化规律,收集并整理了月至月期间月接待游客量(单位:万人)的数据,绘制了如图所示的折线图.      根据该折线图,下列结论正确的是     A.月接待游客量逐月增加 B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8 D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳12关于的方程上有个解.则实数可以等于        A B C D三、填空题:本大题共4个小题,每小题5分,共20分。13已知(其中是虚数单位,),则         14是假命题,则实数的取值范围是         15已知的导函数(),,则         16若函数在区间上不是单调函数,则实数的取值范围是             四、解答题:共70分。解答应写出文字说明,证明过程或演算步骤。17.(10分)如图,已知长方形的周长为,其中点分别为的中点,将平面沿直线向上折起使得平面平面,连接,得到三棱柱.设,记三棱柱体积为                                            1)求函数的解析式2)求函数的最大值.  18.(12分)已知函数恒过定点1)当时,求在点处的切线方程;2)当时,求上的最小值.   19.(12分)已知函数1)当,证明:上单调递增2)当,讨论的极值点.        20.(12分)数学是研究数量、结构、变化、空间以及信息等概念的一门科学.在人类历史发展和社会生活中,数学发挥着不可替代的作用,也是学习和研究现代科学技术必不可少的基本工具.1)为调查大学生喜欢数学命题是否与性别有关,随机选取名大学生进行问卷调查,当被调查者问卷评分不低于分则认为其喜欢数学命题,当评分低于分则认为其不喜欢数学命题问卷评分的茎叶图如下:    依据上述数据制成如下列联表: 喜欢数学命题人数不喜欢数学命题人数总计女生男生总计     请问是否有的把握认为大学生是否喜欢数学命题与性别有关?参考公式及数据:2)在某次命题大赛中,同学要进行轮命题,其在每轮命题成功的概率均为,各轮命题相互独立,若该同学在轮命题中恰有次成功的概率为,记该同学在轮命题中的成功次数为,求   21.(12分)近期,某超市针对一款饮料推出刷脸支付活动,活动设置了一段时间的推广期,由于推广期内优惠力度较大,吸引越来越多的人开始使用刷脸支付.该超市统计了活动刚推出一周内每一天使用刷脸支付的人次,用表示活动推出的天数,表示每天使用刷脸支付的人次,统计数据如下表所示:1)在推广期内, 均为大于零的常数)哪一个适宜作为刷脸支付的人次关于活动推出天数的回归方程类型?(给出判断即可,不必说明理由);2)根据(1)的判断结果及表中的数据,求关于的回归方程,并预测活动推出第天使用刷脸支付的人次;3)已知一瓶该饮料的售价为元,顾客的支付方式有三种:现金支付、扫码支付和刷脸支付,其中有使用现金支付,使用现金支付的顾客无优惠;有使用扫码支付,使用扫码支付享受折优惠;有使用刷脸支付,根据统计结果得知,使用刷脸支付的顾客,享受折优惠的概率为,享受折优惠的概率为,享受折优惠的概率为.根据所给数据估计购买一瓶该饮料的平均花费.参考数据: 其中  参考公式: 对于一组数据,其回归直线的斜率和截距的最小二乘估计公式分别为:   22.(12分)已知函数1)若,证明:2)若有且只有个零点,求实数的取值范围;3)若,求正整数的最小值.
    参考答案一、单项选择题:本大题共8小题,每小题5分,共40分。  1-8 BBDA  ACCA  二、多项选择题:本大题共4小题,每小题5分,共20分。9AC    10ABD    11BCD    12CD三、填空题:本大题共4个小题,每小题5分,共20分。13         14        15       16四、解答题:共70分。解答应写出文字说明,证明过程或演算步骤。1710分)解:1)由题知:····················································2因为,长方形的周长为所以所以·····························································52由(1)知:···················································6所以令,解得··························································7单调递增;······················································8单调递减;······················································9所以······························································1018.(12分)解:1由题知:所以定点·············································2,所以··························································4所以在点处的切线方程:,即············································5     2,所以······················································6,解得······························································7单调递增························································8单调递减························································9又因为···························································11所以的最小值为······················································1219.(12分)解:1由题知:,所以···············································2因为,所以··························································3又因为·····························································4所以 所以上单调递增·····················································52由题知:·······················································6所以·······························································7,则上单调递增,无极值点··········································8,由,解得························································9时,在上单调递减················································10时,在上单调递增················································11所以的极小值点为····················································12 综上,当时,无极值点;时,有一个极小值点,无极大值点2012分)解:1)由题知:····················································4·································································5所以没有的把握认为大学生是否喜欢数学命题与性别有关·······················62)由题知:·······················································8依据二项分布知:,所以··················································9··································································10单调递减;单调递增;因此,所以·························································11所以······························································1221.(12分)解:1)根据散点图判断,适宜作为扫码支付的人数关于活动推出天数的回归方程类型·····················22)因为,两边同时取常用对数得:所以·····························································3因为所以·······························································4把样本中心点代入,: 所以所以关于的回归方程式:···············································5代入上式,所以活动推出第天使用刷脸支付的人次为···································63)记购买一瓶该饮料的花费为(元),则的取值可能为: ···································································7···································································8···································································9··································································10分布列为:因为所以估计购买一瓶该饮料的平均花费为(元)·······························1222.(12分)解:1)由题知,··················································1所以,当时,上单调递增;      时,上单调递减;·············································2所以·······························································32)因为时,上单调递增,不可能有个零点···································4时,令,解得所以,当时,上单调递增;      时,上单调递减;所以·······························································6只有个零点,则,解得:··············································7由(1)知:,所以,令解得:所以,存在,满足      存在,满足所以上个恰有个零点,符合题意综上,所求实数的取值范围为············································83)令所以时,因为,所以所以上是递增函数,又因为所以关于的不等式不能恒成立············································9时,,得,所以当时,,当时,因此函数上是增函数,在是减函数,所以······························································10,因为又因为上是减函数,所以当时,········································11所以整数的最小值为················································12     

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map