


【数学】山东省青岛市胶州市2019-2020学年高二下学期期中学业水平检测试题
展开
山东省青岛市胶州市2019-2020学年高二下学期期中学业水平检测试题本试卷6页,22小题,满分150分.考试用时120分钟. 注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上,并将条形码粘贴在答题卡指定位置上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。3.考试结束后,请将答题卡上交。一、单项选择题:本大题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某物体的运动方程为,其中位移的单位是米,时间的单位是秒,那么该物体在秒末的瞬时速度大小是( ) A.米/秒 B.米/秒 C.米/秒 D.米/秒 2.命题“函数是偶函数”的否定可表示为( ) A. B. C. D. 3.在下列区间上函数单调递减的是( ) A. B. C. D.4.若复数,为虚数单位,则“”是“为纯虚数”的( )A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件5.已知函数的图象如图所示,则可以为( ) A. B. C. D.6.分别独立的扔一枚骰子和硬币,并记下骰子向上的点数和硬币朝上的面,则结果中含有“点或正面向上”的概率为( ) A. B. C. D.7.由于受到网络电商的冲击,某品牌的洗衣机在线下的销售受到影响,承受了一定的经济损失,现将地区家实体店该品牌洗衣机的月经济损失统计如图所示.估算月经济损失的平均数为,中位数为,则( ) A. B. C. D.8.在直角坐标系中,曲线与圆的公共点个数为( ) A.个 B.个 C.个 D.个二、多项选择题:本大题共4小题,每小题5分,共20分。在每小题给出的四个选项中,有多项符合题目要求。全部选对的得5分,部分选对的得3分,有选错的得0分。9.随机变量服从正态分布,则下述正确的是( ) A. B. C. D.10.若复数满足(其中是虚数单位),复数的共轭复数为,则( ) A. B.的实部是 C.的虚部是 D.复数在复平面内对应的点在第一象限11.某市坚持农业与旅游融合发展,着力做好旅游各要素,完善旅游业态,提升旅游接待能力。为了给游客提供更好的服务,旅游部门需要了解游客人数的变化规律,收集并整理了年月至年月期间月接待游客量(单位:万人)的数据,绘制了如图所示的折线图. 根据该折线图,下列结论正确的是( ) A.月接待游客量逐月增加 B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月 D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳12.关于的方程在上有个解.则实数可以等于( ) A. B. C. D.三、填空题:本大题共4个小题,每小题5分,共20分。13.已知(其中是虚数单位,),则 . 14.若“,”是假命题,则实数的取值范围是 . 15.已知是的导函数(),,则 .16.若函数在区间上不是单调函数,则实数的取值范围是 . 四、解答题:共70分。解答应写出文字说明,证明过程或演算步骤。17.(10分)如图,已知长方形的周长为,其中点分别为的中点,将平面沿直线向上折起使得平面平面,连接,得到三棱柱.设,记三棱柱体积为. (1)求函数的解析式;(2)求函数的最大值. 18.(12分)已知函数恒过定点.(1)当时,求在点处的切线方程;(2)当时,求在上的最小值. 19.(12分)已知函数,.(1)当时,证明:在上单调递增;(2)当时,讨论的极值点. 20.(12分)数学是研究数量、结构、变化、空间以及信息等概念的一门科学.在人类历史发展和社会生活中,数学发挥着不可替代的作用,也是学习和研究现代科学技术必不可少的基本工具.(1)为调查大学生喜欢数学命题是否与性别有关,随机选取名大学生进行问卷调查,当被调查者问卷评分不低于分则认为其喜欢数学命题,当评分低于分则认为其不喜欢数学命题,问卷评分的茎叶图如下: 依据上述数据制成如下列联表: 喜欢数学命题人数不喜欢数学命题人数总计女生男生总计 请问是否有的把握认为大学生是否喜欢数学命题与性别有关?参考公式及数据:.(2)在某次命题大赛中,同学要进行轮命题,其在每轮命题成功的概率均为,各轮命题相互独立,若该同学在轮命题中恰有次成功的概率为,记该同学在轮命题中的成功次数为,求. 21.(12分)近期,某超市针对一款饮料推出刷脸支付活动,活动设置了一段时间的推广期,由于推广期内优惠力度较大,吸引越来越多的人开始使用刷脸支付.该超市统计了活动刚推出一周内每一天使用刷脸支付的人次,用表示活动推出的天数,表示每天使用刷脸支付的人次,统计数据如下表所示:(1)在推广期内, 与(均为大于零的常数)哪一个适宜作为刷脸支付的人次关于活动推出天数的回归方程类型?(给出判断即可,不必说明理由);(2)根据(1)的判断结果及表中的数据,求关于的回归方程,并预测活动推出第天使用刷脸支付的人次;(3)已知一瓶该饮料的售价为元,顾客的支付方式有三种:现金支付、扫码支付和刷脸支付,其中有使用现金支付,使用现金支付的顾客无优惠;有使用扫码支付,使用扫码支付享受折优惠;有使用刷脸支付,根据统计结果得知,使用刷脸支付的顾客,享受折优惠的概率为,享受折优惠的概率为,享受折优惠的概率为.根据所给数据估计购买一瓶该饮料的平均花费.参考数据: 其中, 参考公式: 对于一组数据,其回归直线的斜率和截距的最小二乘估计公式分别为: . 22.(12分)已知函数,.(1)若,证明:;(2)若,有且只有个零点,求实数的取值范围;(3)若,,,求正整数的最小值.
参考答案一、单项选择题:本大题共8小题,每小题5分,共40分。 1-8: BBDA ACCA 二、多项选择题:本大题共4小题,每小题5分,共20分。9.AC; 10.ABD; 11.BCD; 12.CD.三、填空题:本大题共4个小题,每小题5分,共20分。13.; 14.; 15.; 16..四、解答题:共70分。解答应写出文字说明,证明过程或演算步骤。17.(10分)解:(1)由题知:····················································2分因为,长方形的周长为,所以,所以,·····························································5分(2)由(1)知:,···················································6分所以令,解得··························································7分当在单调递增;······················································8分当在单调递减;······················································9分所以······························································10分18.(12分)解:(1)由题知:所以定点·············································2分若,,所以··························································4分所以在点处的切线方程:,即············································5分 (2)若,,所以······················································6分令,解得······························································7分当在单调递增························································8分当在单调递减························································9分又因为,···························································11分所以的最小值为······················································12分19.(12分)解:(1)由题知:,所以···············································2分因为,所以··························································3分又因为·····························································4分所以 所以在上单调递增·····················································5分(2)由题知:·······················································6分所以·······························································7分若,则在上单调递增,无极值点··········································8分若,由,解得························································9分当时,,在上单调递减················································10分当时,,在上单调递增················································11分所以的极小值点为····················································12分 综上,当时,无极值点;当时,有一个极小值点,无极大值点20.(12分)解:(1)由题知:····················································4分则·································································5分所以没有的把握认为大学生是否喜欢数学命题与性别有关·······················6分(2)由题知:·······················································8分依据二项分布知:,所以··················································9分令··································································10分当在单调递减;当在单调递增;因此,所以·························································11分所以······························································12分21.(12分)解:(1)根据散点图判断,适宜作为扫码支付的人数关于活动推出天数的回归方程类型·····················2分(2)因为,两边同时取常用对数得:,设所以·····························································3分因为所以·······························································4分把样本中心点代入,得: ,所以,所以关于的回归方程式:···············································5分把代入上式,,所以活动推出第天使用刷脸支付的人次为···································6分(3)记购买一瓶该饮料的花费为(元),则的取值可能为: ···································································7分 ···································································8分···································································9分··································································10分分布列为:因为所以估计购买一瓶该饮料的平均花费为(元)·······························12分22.(12分)解:(1)由题知,,··················································1分所以,当时,,在上单调递增; 当时,,在上单调递减;·············································2分所以·······························································3分(2)因为,当时,,在上单调递增,不可能有个零点···································4分当时,令,解得,所以,当时,,在上单调递增; 当时,,在上单调递减;所以·······························································6分若只有个零点,则,解得:··············································7分由(1)知:,所以,令,解得:或所以,存在,满足; 存在,满足;所以在和上个恰有个零点,符合题意综上,所求实数的取值范围为············································8分(3)令,所以,当时,因为,所以所以在上是递增函数,又因为,所以关于的不等式不能恒成立············································9分当时,.令,得,所以当时,,当时,.因此函数在上是增函数,在是减函数,所以······························································10分令,因为,又因为在上是减函数,所以当时,········································11分所以整数的最小值为.················································12分
