开学活动
搜索
    上传资料 赚现金

    株洲市重点中学2024年数学九年级第一学期开学达标检测试题【含答案】

    株洲市重点中学2024年数学九年级第一学期开学达标检测试题【含答案】第1页
    株洲市重点中学2024年数学九年级第一学期开学达标检测试题【含答案】第2页
    株洲市重点中学2024年数学九年级第一学期开学达标检测试题【含答案】第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    株洲市重点中学2024年数学九年级第一学期开学达标检测试题【含答案】

    展开

    这是一份株洲市重点中学2024年数学九年级第一学期开学达标检测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)若三角形的三条中位线长分别为2cm,3cm,4cm,则原三角形的周长为( )
    A.4.5cmB.18cmC.9cmD.36cm
    2、(4分)一次函数y=﹣2x+3的图象不经过的象限是( )
    A.第一象限B.第二象限C.第三象限D.第四象限
    3、(4分)下列图形中,既是轴对称图形,又是中心对称图形的是( )
    A.B.C.D.
    4、(4分)要使代数式有意义,则的取值范围是( )
    A.B.C.D.且
    5、(4分)如图,折线ABCDE描述了一汽车在某一直路上行驶时汽车离出发地的距离s(千米)和行驶时间t(小时)间的变量关系,则下列结论正确的是( )
    A.汽车共行驶了120千米
    B.汽车在行驶途中停留了2小时
    C.汽车在整个行驶过程中的平均速度为每小时24千米
    D.汽车自出发后3小时至5小时间行驶的速度为每小时60千米
    6、(4分)如图,在菱形ABCD中MN分别在AB、CD上且AM=CN,MN与AC交于点O,连接BO若∠DAC=62°,则∠OBC的度数为( )
    A.28°B.52°C.62°D.72°
    7、(4分)如图,将矩形纸片ABCD沿其对角线AC折叠,使点B落到点B′的位置,AB′与CD交于点E,若AB=8,AD=3,则图中阴影部分的周长为( )
    A.16B.19C.22D.25
    8、(4分)下列式子从左到右的变形中,属于因式分解的是( )
    A.102-5=5(2-1)B.(+y) =+
    C.2-4+4=(-4)+4D.2-16+3=(-4)(+4)+3
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)如图,平行四边形ABCD中,AB:BC=3:2,∠DAB=60°,E在AB上,如果AE:EB=1:2,F是BC的中点,过D分别作DP⊥AF于P,DQ⊥CE于Q,那么DP:DC等于_____.
    10、(4分)如图,在△ABC中,,AC=3,AB=5,AB的垂直平分线DE交AB于点D,交BC于点E,则CE的长等于________.
    11、(4分)如图,正方形ABCD的边长是18,点E是AB边上的一个动点,点F是CD边上一点,,连接EF,把正方形ABCD沿EF折叠,使点A,D分别落在点,处,当点落在直线BC上时,线段AE的长为________.
    12、(4分)当_____________时,在实数范围内有意义.
    13、(4分)如图,点E是正方形ABCD边AD的中点,连接CE,过点A作AF⊥CE交CE的延长线于点F,过点D作DG⊥CF交CE于点G,已知AD=2,则线段AF的长是_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,在△ABC中,CE,BF是两条高,若∠A=70°,∠BCE=30°,求∠EBF与∠FBC的度数.
    15、(8分)如图,在△ABC中,点D是AB的中点,点F是BC延长线上一点,连接DF,交AC于点E,连接BE,∠A=∠ABE.
    (1)求证:DF是线段AB的垂直平分线;
    (2)当AB=AC,∠A=46°时,求∠EBC及∠F的度数.
    16、(8分)电力公司为鼓励市民节约用电,采取按月电量分段收费的办法,已知某户居民每月应缴电费(元)与用电量(度)的函数图象是一条折线(如图),根据图象解答下列问题.
    (1)求出当时,与之间的函数关系式;
    (2)若该用户某月用电度,则应缴费多少元?
    17、(10分)如图中的虚线网格我们称为正三角形网格,它的每一个小三角形都是边长为 1个单位长度的正三角形,这样的三角形称为单位正三角形.
    (1)图①中,已知四边形 ABCD 是平行四边形,求△ABC 的面积和对角线 AC 的长;
    (2)图②中,求四边形 EFGH 的面积.
    18、(10分)化简或计算:
    (1)(π-2019)0-×+;
    (2)(x+2y)2-4y(x+y).
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)关于x的不等式组的解集为x<3,那么m的取值范围是_____.
    20、(4分)如图,在菱形ABCD中,AB=4cm,∠ADC=120°,点E、F同时由A、C两点出发,分别沿AB、CB方向向点B匀速移动(到点B为止),点E的速度为1cm/s,点F的速度为2cm/s,经过t秒△DEF为等边三角形,则t的值为__.
    21、(4分)分式的值为1.则x的值为_____.
    22、(4分)今年全国高考报考人数是10310000,将10310000科学记数法表示为_____.
    23、(4分)如图,已知函数y=2x和函数y=的图象交于A、B两点,过点A作AE⊥x轴于点E,若△AOE的面积为4,P是坐标平面上的点,且以点B、O、E、P为顶点的四边形是平行四边形,则k=_____,满足条件的P点坐标是_________________.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,某小区有一块长为30m,宽为24m的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为480m2,两块绿地之间及周边有宽度相等的人行通道,则人行通道的宽度为多少米?
    25、(10分)如图,△ABC的中线BD,CE交于点O,F,G分别是BO,CO的中点.
    (1)填空:四边形DEFG是 四边形.
    (2)若四边形DEFG是矩形,求证:AB=AC.
    (3)若四边形DEFG是边长为2的正方形,试求△ABC的周长.
    26、(12分)某商店销售A型和B型两种型号的电脑,销售一台A型电脑可获利120元,销售一台B型电脑可获利140元.该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的3倍.设购进A型电脑x台,这100台电脑的销售总利润为y元.
    (1)求y与x的关系式;
    (2)该商店购进A型、B型电脑各多少台,才能使销售利润最大?
    (3)若限定商店最多购进A型电脑60台,则这100台电脑的销售总利润能否为13600元?若能,请求出此时该商店购进A型电脑的台数;若不能,请求出这100台电脑销售总利润的范围.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    试题分析:根据三角形的中位线定理即可得到结果.
    由题意得,原三角形的周长为,
    故选B.
    考点:本题考查的是三角形的中位线
    点评:解答本题的关键是熟练掌握三角形的中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.
    2、C
    【解析】
    试题解析:∵k=-2<0,
    ∴一次函数经过二四象限;
    ∵b=3>0,
    ∴一次函数又经过第一象限,
    ∴一次函数y=-x+3的图象不经过第三象限,
    故选C.
    3、C
    【解析】
    根据轴对称图形和中心对称图形的概念逐一判断即可.
    【详解】
    A:是轴对称图形,不是中心对称图形.故错误;
    B:不是轴对称图形,是中心对称图形.故错误;
    C:是轴对称图形,也是中心对称图形.故正确;
    D:是轴对称图形,不是中心对称图形.故错误;
    故答案选C.
    本题主要考查了轴对称图形和中心对称图形的分辨,熟记轴对称和中心对称的有关概念是解题的关键.
    4、B
    【解析】
    根据二次根式的被开方数x+1是非负数列不等式求解即可.
    【详解】
    要使有意义,
    ∴,
    解得,,
    故选:B
    考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.
    5、D
    【解析】
    根据观察图象的横坐标、纵坐标,可得行驶的路程与时间的关系,根据路程与时间的关系,可得速度.
    【详解】
    A、由图象可以看出,最远处到达距离出发地120千米处,但又返回原地,所以行驶的路程为240千米,错误,不符合题意;
    B、停留的时候,时间增加,路程不变,所以停留的时间为2-1.5=0.5小时,错误,不符合题意;
    C、平均速度为总路程÷总时间,总路程为240千米,总时间为5小时,所以平均速度为240÷5=48千米/时,错误,不符合题意;
    D、汽车自出发后3小时至5小时间行驶的速度为120÷(5-3)=60千米/时,正确,符合题意,
    故选D.
    本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决;用到的知识点为:平均速度=总路程÷总时间.
    6、A
    【解析】
    连接OB,根据菱形的性质以及AM=CN,利用ASA可得△AMO≌△CNO,可得AO=CO,然后可得BO⊥AC,继而可求得∠OBC的度数.
    【详解】
    解:连接OB,
    ∵四边形ABCD为菱形
    ∴AB∥CD,AB=BC,
    ∴∠MAO=∠NCO,∠AMO=∠CNO,
    在△AMO和△CNO中,
    ∵,
    ∴△AMO≌△CNO(ASA),
    ∴AO=CO,
    ∵AB=BC,
    ∴BO⊥AC,
    ∴∠BOC=90°,
    ∵∠DAC=62°,
    ∴∠BCA=∠DAC=62°,
    ∴∠OBC=90°-62°=28°.
    故选:A.
    本题考查了菱形的性质和全等三角形的判定和性质,注意掌握菱形对边平行以及对角线相互垂直的性质.
    7、C
    【解析】
    首先由四边形ABCD为矩形及折叠的特性,得到B′C=BC=AD,∠B′=∠B=∠D=90°,∠B′EC=∠DEA,得到△AED≌△CEB′,得出EA=EC,再由阴影部分的周长为AD+DE+EA+EB′+B′C+EC,即矩形的周长解答即可.
    【详解】
    解:∵四边形ABCD为矩形,
    ∴B′C=BC=AD,∠B′=∠B=∠D=90°
    ∵∠B′EC=∠DEA,
    在△AED和△CEB′中,

    ∴△AED≌△CEB′(AAS);
    ∴EA=EC,
    ∴阴影部分的周长为AD+DE+EA+EB′+B′C+EC,
    =AD+DE+EC+EA+EB′+B′C,
    =AD+DC+AB′+B′C,
    =3+8+8+3,
    =22,
    故选:C.
    本题主要考查了图形的折叠问题,全等三角形的判定和性质,及矩形的性质.熟记翻折前后两个图形能够重合找出相等的角是解题的关键.
    8、A
    【解析】
    因式分解是将一个多项式转化成几个代数式乘积的形式,据此定义进行选择即可.
    【详解】
    A.符合定义且运算正确,所以是因式分解,符合题意;
    B.是单项式乘多项式的运算,不是因式分解,不符合题意;
    C.因为,所以C不符合题意;
    D.不符合定义,不是转换成几个代数式乘积的形式,不符合题意;
    综上所以答案选A.
    本题考查的是因式分解的定义,熟知因式分解是将式子转化成几个代数式乘积的形式是解题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、
    【解析】
    连接DE、DF,过F作FN⊥AB于N,过C作CM⊥AB于M,根据平行四边形的性质得到AD∥BC,根据平行线的性质得到∠CBN=∠DAB=60°,根据勾股定理得到AF=,根据三角形和平行四边形的面积公式即可得到结论.
    【详解】
    连接DE、DF,过F作FN⊥AB于N,过C作CM⊥AB于M,
    ∵四边形ABCD是平行四边形,
    ∴AD∥BC,
    ∵∠DAB=60°,
    ∴∠CBN=∠DAB=60°,
    ∴∠BFN=∠MCB=30°,
    ∵AB:BC=3:2,
    ∴设AB=3a,BC=2a,
    ∴CD=3a,
    ∵AE:EB=1:2,F是BC的中点,
    ∴BF=a,BE=2a,
    ∵∠FNB=∠CMB=90°,∠BFN=∠BCM=30°,
    ∴BM=BC=a,BN=BF=a,FN=a,CM=a,
    ∴AF=,
    ∵F是BC的中点,
    ∴S△DFA=S平行四边形ABCD,
    即AF×DP=CD×CM,
    ∴PD=,
    ∴DP:DC=.
    故答案为:.
    本题考查了平行四边形的性质,平行四边形面积,勾股定理,三角形的面积,含30度角的直角三角形等知识点的应用,正确的作出辅助线是解题的关键.
    10、
    【解析】
    连接AE,由垂直平分线的性质可得AE=BE,利用勾股定理可得BC=4,设CE的长为x,则BE=4-x,在△ACE中利用勾股定理可得x的长,即得CE的长.
    【详解】
    解:连接AE,
    ∵DE为AB的垂直平分线,
    ∴AE=BE,
    ∵在△ABC中,∠ACB=90°,AC=3,AB=5,
    由勾股定理得BC=4,
    设CE的长为x,则BE=AE=4-x,在Rt△ACE中,
    由勾股定理得:x2+32=(4-x)2,
    解得:x=,
    故答案为:.
    本题主要考查了垂直平分线的性质和勾股定理,利用方程思想是解答此题的关键.
    11、4或1
    【解析】
    分两种情况:①D′落在线段BC上,②D′落在线段BC延长线上,分别连接ED、ED′、DD′,利用折叠的性质以及勾股定理,即可得到线段AE的长.
    【详解】
    解:分两种情况:
    ①当D′落在线段BC上时,连接ED、ED′、DD′,如图1所示:
    由折叠可得,D,D'关于EF对称,即EF垂直平分DD',
    ∴DE=D′E,
    ∵正方形ABCD的边长是18,
    ∴AB=BC=CD=AD=18,
    ∵CF=8,
    ∴DF=D′F=CD−CF=10,
    ∴CD′==6,
    ∴BD'=BC−CD'=12,
    设AE=x,则BE=18−x,
    在Rt△AED和Rt△BED'中,
    由勾股定理得:DE2=AD2+AE2=182+x2,D'E2=BE2+BD'2=(18−x)2+122,
    ∴182+x2=(18−x)2+122,
    解得:x=4,即AE=4;
    ②当D′落在线段BC延长线上时,连接ED、ED′、DD′,如图2所示:
    由折叠可得,D,D'关于EF对称,即EF垂直平分DD',
    ∴DE=D′E,
    ∵正方形ABCD的边长是18,
    ∴AB=BC=CD=AD=18,
    ∵CF=8,
    ∴DF=D′F=CD−CF=10,CD'==6,
    ∴BD'=BC+CD'=24,
    设AE=x,则BE=18−x,
    在Rt△AED和Rt△BED'中,
    由勾股定理得:DE2=AD2+AE2=182+x2,D'E2=BE2+BD'2=(18−x)2+242,
    ∴182+x2=(18−x)2+242,
    解得:x=1,即AE=1;
    综上所述,线段AE的长为4或1;
    故答案为:4或1.
    本题考查了正方形的性质、折叠变换的性质、线段垂直平分线的性质、勾股定理等知识;熟练掌握折叠变换的性质,由勾股定理得出方程是解题的关键,注意分类讨论.
    12、a≥1
    【解析】
    根据二次根式有意义的条件可得a-1≥0,再解不等式即可.
    【详解】
    由题意得:a-1≥0,
    解得:a≥1,
    故答案为: a≥1.
    此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.
    13、1
    【解析】
    先利用正方形的性质得到∠ADC=90°,CD=AD=1 ,再利用E点为AD的中点得到AE=DE=,则利用勾股定理可计算出CE=5,然后证明Rt△AEF∽Rt△CED,从而利用相似比可计算出AF的长.
    【详解】
    ∵四边形ABCD为正方形,
    ∴∠ADC=90°,CD=AD=1,
    ∵点E是正方形ABCD边AD的中点,
    ∴AE=DE= ,
    在Rt△CDE中,
    ∵AF⊥CE,
    ∴∠F=90°,
    ∵∠AEF=∠CED,
    ∴Rt△AEF∽Rt△CED,
    ∴,即
    ∴AF=1.
    故答案为1.
    本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;正方形具有四边形、平行四边形、矩形、菱形的一切性质.也考查了相似三角形的判定与性质.
    三、解答题(本大题共5个小题,共48分)
    14、∠EBF=20°,∠FBC=40°.
    【解析】
    试题分析:在Rt△ABF中,∠A=70,CE,BF是两条高,求得∠EBF的度数,在Rt△BCF中∠FBC=40°求得∠FBC的度数.
    解:在Rt△ABF中,∠A=70,CE,BF是两条高,
    ∴∠EBF=20°,∠ECA=20°,
    又∵∠BCE=30°,
    ∴∠ACB=50°,
    ∴在Rt△BCF中∠FBC=40°.
    15、(1)见解析;(2)∠EBC =21°,∠F=23°.
    【解析】
    试题分析:(1)、根据题意得出AE=BE,然后结合AD=BD得出答案;(2)、根据等腰三角形的性质得出∠ABC=∠ACB=67°,根据∠EBC=∠ABC﹣∠ABE和∠F=90°﹣∠ABC得出角度.
    试题解析:(1)、证明:∵∠A=∠ABE, ∴EA=EB, ∵AD=DB,
    ∴DF是线段AB的垂直平分线;
    (2)、解:∵∠A=46°, ∴∠ABE=∠A=46°, ∵AB=AC, ∴∠ABC=∠ACB=67°,
    ∴∠EBC=∠ABC﹣∠ABE=21°, ∠F=90°﹣∠ABC=23°.
    16、(1);(2)用电度,应缴费元
    【解析】
    (1)本题考查的是分段函数的知识.依题意可以列出函数关系式;
    (2)根据(1)中的函数解析式以及图标即可解答.
    【详解】
    解:(1)设与的关系式为,
    射线过点、,
    ,
    解得.
    与的关系式是.
    (2)当时,
    .
    用电度,应缴费元.
    本题主要考查一次函数的应用以及待定系数法求函数解析式,解决问题的关键是从一次函数的图象上获取信息.
    17、(1)△ABC 的面积为,AC =;(2)四边形 EFGH 的面积为.
    【解析】
    (1)首先过点A作AK⊥BC于K,由每一个小三角形都是边长为1个单位长度的正三角形,可求得每一个小正三角形的高为,进一步可求得△ABC的面积,然后由勾股定理可求得对角线AC的长;
    (2)过点E作EP⊥FH于P,则四边形EFGH的面积=2S△EFH=2××EP×FH= EP×FH,再代入数据计算即可得出结果.
    【详解】
    解:(1)如图③,过点A作AK⊥BC于K,
    ∵每一个小三角形都是边长为1个单位长度的正三角形,
    ∴每一个小正三角形的高为,
    ∴.
    ∴△ABC 的面积=;
    ∵BK=,∴.
    ∴.
    (2)如图④,过点E作EP⊥FH于P,则EP=,
    由题意可得四边形EFGH的面积=2S△EFH=2××EP×FH= EP×FH=.
    此题考查了平行四边形的性质、勾股定理和等边三角形的性质,解题的关键正确理解题意,作出所需辅助线,注意数形结合去思考分析,熟知等边三角形的性质和有关计算.
    18、(1)-1;(1)x1
    【解析】
    (1)分别根据0指数幂的意义、二次根式的乘法法则和负整数指数幂的运算法则计算每一项,再合并即可;
    (1)分别根据完全平方公式和单项式乘以多项式的法则计算每一项,再合并同类项即可.
    【详解】
    解:(1)原式=1-+1=1-4+1=-1;
    (1)原式=x1+4xy+4y1-4xy-4y1=x1.
    本题考查了二次根式的乘法运算、0指数幂的意义、负整数指数幂的运算法则和多项式的乘法法则等知识,属于基本题型,熟练掌握上述基本知识是解题的关键.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、m≥1
    【解析】
    首先解第一个不等式,然后根据不等式组的解集即可确定m的范围.
    【详解】

    解①得x<1,
    ∵不等式组的解集是x<1,
    ∴m≥1.
    故答案是:m≥1.
    本题考查了一元一次不等式组的解法,一般先求出其中各不等式的解集,再求出这些解集的公共部分,确定解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.
    20、
    【解析】
    延长AB至M,使BM=AE,连接FM,证出△DAE≌EMF,得到△BMF是等边三角形,再利用菱形的边长为4求出时间t的值.
    【详解】
    延长AB至M,使BM=AE,连接FM,
    ∵四边形ABCD是菱形,∠ADC=120°
    ∴AB=AD,∠A=60°,
    ∵BM=AE,
    ∴AD=ME,
    ∵△DEF为等边三角形,
    ∴∠DAE=∠DFE=60°,DE=EF=FD,
    ∴∠MEF+∠DEA═120°,∠ADE+∠DEA=180°﹣∠A=120°,
    ∴∠MEF=∠ADE,
    ∴△DAE≌EMF(SAS),
    ∴AE=MF,∠M=∠A=60°,
    又∵BM=AE,
    ∴△BMF是等边三角形,
    ∴BF=AE,
    ∵AE=t,CF=2t,
    ∴BC=CF+BF=2t+t=3t,
    ∵BC=4,
    ∴3t=4,
    ∴t=
    考点:(1)、菱形的性质;(2)、全等三角形的判定与性质;(3)、等边三角形的性质.
    21、2
    【解析】
    分式的值为1的条件是:(1)分子为1;(2)分母不为1.两个条件需同时具备,缺一不可.据此可以解答本题.
    【详解】
    解:由题意可得|x|-2=1且x+2≠1,
    解得x=2.
    故答案是:2.
    考查了分式的值为零的条件,由于该类型的题易忽略分母不为1这个条件,所以常以这个知识点来命题.
    22、
    【解析】
    根据科学计数法的表示方法即可求解.
    【详解】
    解:将10310000科学记数法表示为.
    故答案为:.
    此题主要考查科学计数法的表示,解题的关键是熟知科学计数法的表示方法.
    23、8 P1(0,-4),P2(-4,-4),P3(4,4)
    【解析】
    解:如图
    ∵△AOE的面积为4,函数y=的图象过一、三象限,
    ∴S△AOE=•OE•AE=4,
    ∴OE•AE=8,
    ∴xy=8,
    ∴k=8,
    ∵函数y=2x和函数y=的图象交于A、B两点,
    ∴2x=,
    ∴x=±2,
    当x=2时,y=4,当x=-2时,y=-4,
    ∴A、B两点的坐标是:(2,4)(-2,-4),
    ∵以点B、O、E、P为顶点的平行四边形共有3个,
    ∴满足条件的P点有3个,分别为:
    P1(0,-4),P2(-4,-4),P3(4,4).
    故答案为:8;P1(0,-4),P2(-4,-4),P3(4,4).
    本题考查反比例函数综合题.
    二、解答题(本大题共3个小题,共30分)
    24、人行通道的宽度为2米.
    【解析】
    设人行通道的宽度为x米,将两块矩形绿地合在一起长为(30﹣3x)m,宽为(24﹣2x)m,根据矩形绿地的面积为480m2,即可列出关于x的一元二次方程,解方程即可得出x的值,经检验后得出x=20不符合题意,此题得解.
    【详解】
    解:设人行通道的宽度为x米,将两块矩形绿地合在一起长为(30﹣3x)m,宽为(24﹣2x)m,
    由已知得:(30﹣3x)•(24﹣2x)=480,
    整理得:x2﹣22x+40=0,
    解得:x1=2,x2=20,
    当x=20时,30﹣3x=﹣30,24﹣2x=﹣16,
    不符合题意,
    答:人行通道的宽度为2米.
    本题考查了一元二次方程的应用,根据数量关系列出关于x的一元二次方程是解题的关键.
    25、(1)平行;(2)见解析;(3).
    【解析】
    (1)根据三角形中位线定理得出DE∥BC,DE=BC,FG∥BC,FG=BC,那么DE∥FG,DE=FG,利用有一组对边平行且相等的四边形是平行四边形即可得出四边形DEFG是平行四边形;
    (2)先由矩形的性质得出OD=OE=OF=OG.再根据重心的性质得到OB=2OD,OC=2OE,等量代换得出OB=OC.利用SAS证明△BOE≌△COD,得出BE=CD,然后根据中点的定义即可证明AB=AC;
    (3)连接AO并延长交BC于点M,先由三角形中线的性质得出M为BC的中点,由(2)得出AB=AC,根据等腰三角形三线合一的性质得出AM⊥BC,再由三角形中位线定理及三角形重心的性质得出BC=2FG=1,AM=AO=6,由勾股定理求出AB=2,进而得到△ABC的周长.
    【详解】
    (1)解:∵△ABC的中线BD,CE交于点O,
    ∴DE∥BC,DE=BC,
    ∵F,G分别是BO,CO的中点,
    ∴FG∥BC,FG=BC,
    ∴DE∥FG,DE=FG,
    ∴四边形DEFG是平行四边形.
    故答案为平行;
    (2)证明:∵四边形DEFG是矩形,
    ∴OD=OE=OF=OG.
    ∵△ABC的中线BD,CE交于点O,
    ∴点O是△ABC的重心,
    ∴OB=2OD,OC=2OE,
    ∴OB=OC.
    在△BOE与△COD中,

    ∴△BOE≌△COD(SAS),
    ∴BE=CD,
    ∵E、D分别是AB、AC中点,
    ∴AB=AC;
    (3)解:连接AO并延长交BC于点M.
    ∵三角形的三条中线相交于同一点,△ABC的中线BD、CE交于点O,
    ∴M为BC的中点,
    ∵四边形DEFG是正方形,
    由(2)可知,AB=AC,
    ∴AM⊥BC.
    ∵正方形DEFG边长为2,F,G分别是BO,CO的中点,
    ∴BC=2FG=1,BM=MC=BC=2,AO=2EF=1,
    ∴AM=AO=6,
    ∴AB===2,
    ∴△ABC的周长=AB+AC+BC=1+1.
    本题考查了平行四边形的判定与性质,三角形中位线性质定理,矩形的性质,三角形重心的性质,等腰三角形的性质,全等三角形的判定与性质,其中三角形的中位线性质定理为证明线段相等和平行提供了依据.
    26、(1)y=﹣20x+14000;(2)商店购进25台A型电脑和75台B型电脑的销售利润最大;(3)这100台电脑销售总利润的范围为12800≤y≤13500
    【解析】
    分析:(1)据题意即可得出
    (2)利用不等式求出x的范围,又因为是减函数,所以得出y的最大值,
    (3)据题意得, y随x的增大而减小,进行求解.
    详解:(1)由题意可得:
    (2)据题意得, ,解得

    ∴y随x的增大而减小,
    ∵x为正整数,
    ∴当x=25时,y取最大值,则
    即商店购进25台A型电脑和75台B型电脑的销售利润最大;
    (3)据题意得, 即 当时,解得x=20,不符合要求
    y随x的增大而减小,
    ∴当x=25时,y取最大值,
    即商店购进25台A型电脑和75台B型电脑的销售利润最大,此时y=13500元.
    当x=60时,y取得最小值,此时y=12800元.
    故这100台电脑销售总利润的范围为12800≤y≤13500.
    点睛:考查了一次函数的应用,一元一次不等式的应用,解题的关键是掌握一次函数的性质.
    题号





    总分
    得分

    相关试卷

    郑州市重点中学2024年数学九年级第一学期开学达标检测模拟试题【含答案】:

    这是一份郑州市重点中学2024年数学九年级第一学期开学达标检测模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    内江市重点中学2024年数学九年级第一学期开学达标检测模拟试题【含答案】:

    这是一份内江市重点中学2024年数学九年级第一学期开学达标检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    南充市重点中学2024年数学九年级第一学期开学达标检测模拟试题【含答案】:

    这是一份南充市重点中学2024年数学九年级第一学期开学达标检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map