重庆市秀山县2025届数学九上开学统考试题【含答案】
展开
这是一份重庆市秀山县2025届数学九上开学统考试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)下列计算正确的是( )
A.B.C.D.
2、(4分)若点A(﹣2,0)、B(﹣1,a)、C(0,4)在同一条直线上,则a的值是( )
A.2B.1C.﹣2D.4
3、(4分)函数的自变量的取值范围是( )
A.B.C.D.
4、(4分)如图,在菱形ABCD中,∠B=120°,对角线AC=6cm,则AB的长为( )cm
A.B.C.D.
5、(4分)函数y=x-1的图象是( )
A.B.
C.D.
6、(4分)如图,已知直线y1=x+a与y2=kx+b相交于点P(﹣1,2),则关于x的不等式x+a>kx+b的解集正确的是( )
A.x>﹣1B.x>1C.x<1D.x<﹣1
7、(4分)如果,下列不等式中错误的是( )
A.B.C.D.
8、(4分)在函数中,自变量x的取值范围是( )
A.x≠﹣2B.x>﹣2C.x≠0D.x≠2
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)已知关于的方程的一个根是x=-1,则_______.
10、(4分)如图,矩形的面积为,平分,交于,沿将折叠,点的对应点刚好落在矩形两条对角线的交点处.则的面积为________.
11、(4分)如图,在中,,,的周长是10,于,于,且点是的中点,则的长是______.
12、(4分)在函数y=中,自变量x的取值范围是_______.
13、(4分)如图,一次函数y=-2x+2的图象与轴、轴分别交于点、,以线段为直角边在第一象限内作等腰直角三角形ABC,且,则点C坐标为_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)如图,四边形ABCD是正方形,AC与BD,相交于点O,点E、F是边AD上两动点,且AE=DF,BE与对角线AC交于点G,联结DG,DG交CF于点H.
(1)求证:∠ADG=∠DCF;
(2)联结HO,试证明HO平分∠CHG.
15、(8分)已知关于x的方程x2 -(m+1)x+2(m-1)=0,
(1)求证:无论m取何值时,方程总有实数根;
(2)若等腰三角形腰长为4,另两边恰好是此方程的根,求此三角形的另外两条边长.
16、(8分)为鼓励学生积极参加体育锻炼,某学校准备购买一批运动鞋供学生借用,现从各年级随机抽取了部分学生所穿运动鞋的号码,绘制了如下的统计图①和图②(不完整).请根据相关信息,解答下列问题:
(1)本次接受随机抽样调查的学生人数为 ,图①中m的值为 ;
(2)请补全条形统计图,并求本次调查样本数据的众数和中位数;
(3)根据样本数据,若学校计划购买400双运动鞋,建议购买35号运动鞋多少双?
17、(10分)如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D.过点D作DE⊥AB于点E.求证:△ACD≌△AED.
18、(10分)如图,一学校(点M)距公路(直线l)的距离(MA)为1km,在公路上距该校2km处有一车站(点N),该校拟在公路上建一个公交车停靠点(点p),以便于本校职工乘车上下班,要求停靠站建在AN之间且到此校与车站的距离相等,请你计算停靠站到车站的距离.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)数学兴趣小组的甲、乙、丙、丁四位同学进行还原魔方练习,下表记录了他们次还原魔方所用时间的平均值与方差:
要从中选择一名还原魔方用时少又发挥稳定的同学参加比赛,应该选择________同学.
20、(4分)若一次函数的图象,随的增大而减小,则的取值范围是_____.
21、(4分)已知一次函数的图象经过点,则不等式的解是__________.
22、(4分)实数64的立方根是4,64的平方根是________;
23、(4分)新定义:[a,b]为一次函数y=ax+b(a≠0,a,b为实数)的“关联数”,若“关联数”[1,m﹣2]的一次函数是正比例函数,则关于x的方程x2+3x+m=0的解为_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)在△ABC中,∠C=30°,AC=4cm,AB=3cm,求BC的长.
25、(10分)已知正方形与正方形(点C、E、F、G按顺时针排列),是的中点,连接,.
(1)如图1,点在上,点在的延长线上,
求证:=ME,⊥.ME
简析: 由是的中点,AD∥EF,不妨延长EM交AD于点N,从而构造出一对全等的三角形,即 ≌ .由全等三角形性质,易证△DNE是 三角形,进而得出结论.
(2)如图2, 在的延长线上,点在上,(1)中结论是否成立?若成立,请证明你的结论;若不成立,请说明理由.
(3)当AB=5,CE=3时,正方形的顶点C、E、F、G按顺时针排列.若点在直线CD上,则DM= ;若点E在直线BC上,则DM= .
26、(12分)上合组织峰会期间,甲、乙两家商场都将平时以同样价格出售相同的商品进行让利酬宾,其中甲商场所有商品按7折出售,乙商场对一次购物中超过200元后的价格部分打6折.
(1)以x(单位:元)表示商品原价,y(单位:元)表示付款金额,分别就两家商场的让利方式写出y与x之间的函数解析式;
(2)上合组织峰会期问如何选择这两家商场去购物更省钱?
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、C
【解析】
根据二次根式的加法法则判断A、B;根据二次根式的乘法法则判断C;根据二次根式的除法法则判断D.
【详解】
A、不是同类二次根式,不能合并,故本选项错误;
B、不能合并,故本选项错误;
C、故本选项正确;
D、故本选项错误;
故选:C.
本题考查了二次根式的运算,掌握运算法则是解题的关键.
2、A
【解析】
先根据A、C两点的坐标求出过此两点的函数解析式,再把B(﹣1,a)代入此解析式即可求出a的值.
【详解】
设直线AC的解析式为y=kx+b(k≠0),
把点A(-2,0)、C(0,4)分别代入得
,解得,
∴直线AC的解析式为y=2x+4,
把B(-1,a)代入得-2+4=a,
解得:a=2,
故选A.
本题考查了一次函数图象上点的坐标特征,待定系数法等,根据题意得出该一次函数的解析式是解答此题的关键.
3、B
【解析】
根据分母为零无意义,可得答案.
【详解】
解:由题意,得,
解得,
故选:B.
本题考查了函数自变量的取值范围,利用分母不等于零得出不等式是解题关键.
4、D
【解析】
作辅助线,证明Rt△AEB为特殊的直角三角形,利用三角函数即可求解.
【详解】
如下图,连接BD,角AC于点E,
∵四边形ABCD为菱形,
∴AC⊥BD,∠AEB=90°,BD平分∠ABC,即∠ABE=60°,AE=3cm,
在Rt△AEB中, AE=3cm,
∴AB==3=2
故选D.
本题考查了菱形的性质,三角函数的实际应用,中等难度,作辅助线是解题关键.
5、D
【解析】
∵一次函数解析式为y=x-1,
∴令x=0,y=-1.
令y=0,x=1,
即该直线经过点(0,-1)和(1,0).
故选D.
考点:一次函数的图象.
6、A
【解析】
根据图象求解不等式,要使x+a>kx+b,则必须在y1=x+a在y2=kx+b上方,根据图形即可写出答案.
【详解】
解:因为直线y1=x+a与y2=kx+b相交于点P(﹣1,2)
要使不等式x+a>kx+b,则必须在y1=x+a在y2=kx+b上方
所以可得x>﹣1时,y1=x+a在y2=kx+b上方
故选A.
本题主要考查利用函数图形求解不等式,关键在于根据图象求交点坐标.
7、B
【解析】
根据a<b<0,可得ab>0,a+b<0,>0,a-b<0,从而得出答案.
【详解】
A、ab>0,故本选项不符合题意;
B、>1,故本选项符合题意;
C、a+b<0,故本选项不符合题意;
D、a-b<0,故本选项不符合题意.
故选:B.
本题考查了不等式的性质,是基础知识比较简单.
8、A
【解析】
根据分式有意义的条件是分母不为2;分析原函数式可得关系式x+1≠2,即可得答案.
【详解】
根据题意可得x+1≠2;
解得x≠-1.
故选A.
本题主要考查函数自变量的取值范围和分式有意义的条件,当函数表达式是分式时,考虑分式的分母不能为2.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、
【解析】
试题分析:因为方程的一个根是x=-1,所以把x=-1代入方程得,所以,所以.
考点:一元二次方程的根.
10、
【解析】
先证明△AEB≌△FEB≌△DEF,从而可知S△ABE =S△DAB,即可求得△ABE的面积.
【详解】
解:由折叠的性质可知:△AEB≌△FEB
∴∠EFB=∠EAB=90°
∵ABCD为矩形
∴DF=FB
∴EF垂直平分DB
∴ED=EB
在△DEF和△BEF中
DF=BF EF=EF ED=EB
∴△DEF≌△BEF
∴△AEB≌△FEB≌△DEF
∴.
故答案为1.
本题主要考查的是折叠的性质、矩形的性质、线段垂直平分线的性质和判定、全等三角形的判定和性质,证得△AEB≌△FEB≌△DEF是解题的关键.
11、
【解析】
根据直角三角形斜边上的中线以及等腰三角形的性质即可求出答案.
【详解】
解:∵AB=AC,AF⊥BC,
∴AF是△ABC的中线,
∵D是AB的中点,
∴DF是△ABC的中位线,
设AB=BC=2x,
∴DF=x,
∵BE⊥AC,点D是AB的中点,点F是BC的中点,
∴DE=AB=x,EF=BC=4,
∵△DEF的周长为10,
∴x+x+4=10,
∴x=3,
∴AC=6,
∴由勾股定理可知:AF=
故答案为:.
本题考查直角三角形斜边上的中线,解题的关键是熟练运用直角三角形斜边上的中线,等腰三角形的性质以及勾股定理,本题属于中等题型.
12、x≥﹣2且x≠0
【解析】
根据题意得x+2≥0且x≠0,即x≥-2且x≠0.
13、 (3,1);
【解析】
先求出点A,B的坐标,再判断出△ABO≌△CAD,即可求出AD=2,CD=1,即可得出结论;
【详解】
如图,过点C作CD⊥x轴于D,
令x=0,得y=2,
令y=0,得x=1,
∴A(1,0),B(0,2),
∴OA=1,OB=2,
∵△ABC是等腰直角三角形,
∴AB=AC,∠BAC=90°,
∴∠BAO+∠CAD=90°,
∵∠ACD+∠CAD=90°,
∴∠BAO=∠ACD,
∵∠BOA=∠ADC=90°,
∴△ABO≌△CAD,
∴AD=BO=2,CD=AO=1,
∴OD=3,
∴C(3,1);
此题考查一次函数综合,解题关键在于作辅助线
三、解答题(本大题共5个小题,共48分)
14、 (1)证明见解析;(2)证明见解析.
【解析】
(1)根据题意可得△DFC≌△AFB,△AGB≌△ADG,可得∠ADG=∠DCF
(2)由题意可证CF⊥DG,由∠CHD=∠COD=90°,则D,F,O,C四点共圆,可得∠CDO=∠CHO=45°,可证OH平分∠CHG.
【详解】
(1)∵四边形ABCD是正方形
∴AB=AD=CD=BC,∠CDA=∠DAB=90°,∠DAC=∠CAB=45°,AC⊥BD
∵DC=AB,DF=AE,∠CDA=∠DAB=90°
∴△DFC≌△AEB
∴∠ABE=∠DCF
∵AG=AG,AB=AD,∠DAC=∠CAB=45°
∴△ADG≌△ABG
∴∠ADG=∠ABE
∴∠DCF=∠ADG
(2)∵∠DCF=∠ADG,且∠ADG+∠CDG=90°
∴∠DCF+∠CDG=90°
∴∠CHD=∠CHG=90°
∵∠CHD=∠COD
∴C,D,H,O四点共圆
∴∠CHO=∠CDO=45°
∴∠GHO=∠CHO=45°
∴HO平分∠CHG
本题考查了正方形的性质,全等三角形的判定和性质,灵活运用这些性质解决问题是本题的关键.
15、证明见解析 1和2
【解析】
(1)根据方程的系数结合根的判别式即可得出△=(m-3)2≥0,由此即可证出结论;
(2) 等腰三角形的腰长为1,将x=1代入原方程求出m值,将m的值代入原方程中解方程即可得出方程的解,再根据三角形的三边关系确定△ABC的三条边,结合三角形的周长即可得出结论.
【详解】
(1)证明:∵△=[﹣(m+1)]2﹣1×2(m﹣1)=m2﹣6m+9=(m﹣3)2≥0,
∴无论m取何值,这个方程总有实数根;
(2)等腰三角形的腰长为1,将x=1代入原方程,得:16﹣1(m+1)+2(m﹣1)=0,
解得:m=5,
∴原方程为x2﹣6x+8=0,
解得:x1=2,x2=1.
组成三角形的三边长度为2、1、1;
所以三角形另外两边长度为1和2.
本题考查了根的判别式,三角形三边关系,等腰三角形的性质以及解一元二次方程,⑴牢记当△≥0时,方程有实数根,⑵代入x=1求出m的值是解决本题的关键.
16、 (1) 40,15;(2)见解析;(3)120双
【解析】
(1)根据统计图中的数据可以得到调查的总人数和m的值;
(2)根据(1)中的结果可以求得34号运动鞋的人数,从而可以将条形统计图补充完整,进而得到相应的众数和中位数;
(3)根据统计图中的数据可以解答本题.
【详解】
(1)12÷30%=40,
m%=×100%=15%,
故答案为:40,15;
(2)34号运动鞋为:40-12-10-8-4=6,
补全的条形统计图如图所示,
由条形统计图可得,本次调查样本数据的众数和中位数分别是:35号、36号;
(3)400×30%=120(双),
答:建议购买35号运动鞋120双.
考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.
17、见解析.
【解析】
首先根据AD平分∠CAB, ,可得CD=DE,即可证明△ACD≌△AED.
【详解】
证明: AD平分∠CAB
CD=DE
△ACD≌△AED(AAS).
本题主要考查三角形的全等证明,是基本知识,应当熟练掌握.
18、停靠站P到车站N的距离是
【解析】
【分析】连接PM,则有PM=PN,在Rt△AMN中根据勾股定理可求出AN的长,设NP为x,则MP=NP=x,AP=-x,在Rt△AMP中,由勾股定理求出x的值即可得.
【详解】连接PM,则有PM=PN,
在Rt△AMN中,∠MAN=90°,MN=2,AM=1,∴AN=,
设NP为x,则MP=NP=x,AP=-x,
在Rt△AMP中,∠MAP=90°,由勾股定理有:MP2=AP2+AM2,
∴12+(-x)2=x2,
∴x=,
所以,停靠站P到车站N的距离是.
【点睛】本题考查了勾股定理的应用, 正确添加辅助线、熟练应用勾股定理是解题的关键.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、丁
【解析】
据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
【详解】
解:因为乙和丁的方差最小,但丁平均数最小,
所以丁还原魔方用时少又发挥稳定.
故应该选择丁同学.
本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
20、
【解析】
利用函数的增减性可以判定其比例系数的符号,从而确定m的取值范围.
【详解】
解:∵一次函数y=(m-1)x+2,y随x的增大而减小,
∴m-1<0,
∵m<1,
故答案为:m<1.
本题考查了一次函数的图象与系数的关系.函数值y随x的增大而减小⇔k<0;函数值y随x的增大而增大⇔k>0.
21、
【解析】
将点P坐标代入一次函数解析式得出,如何代入不等式计算即可.
【详解】
∵一次函数的图象经过点,
∴,即:,
∴可化为:,
即:,
∴.
故答案为:.
本题主要考查了一次函数与不等式的综合运用,熟练掌握相关概念是解题关键.
22、
【解析】
根据平方根的定义求解即可.
【详解】
.
故答案为:.
本题考查了平方根的定义,熟练掌握平方根的定义是解答本题的关键,如果一个数的平方等于a,则这个数叫做a的平方根,即x2=a,那么x叫做a的平方根,记作.
23、x1=﹣1,x1=﹣1.
【解析】
利用题中的新定义求出m的值,代入一元二次方程,运用因式分解法解方程,即可求出解.
【详解】
解:由“关联数”定义得一次函数为y=x+m﹣1,
又∵此一次函数为正比例函数,∴m﹣1=0,
解得:m=1,
∴关于x的方程为x1+3x+1=0,
因式分解得:(x+1)(x+1)=0,
∴x+1=0或x+1=0,
∴x1=﹣1,x1=﹣1;
故答案为x1=﹣1,x1=﹣1.
本题考查新定义“关联数”、一元二次方程的解法以及一次函数的定义,弄清题中的新定义是解本题的关键.
二、解答题(本大题共3个小题,共30分)
24、
【解析】
首先过点A作AD⊥BC,根据Rt△ADC和Rt△ABD的勾股定理分别求出CD和BD的长度,从而得出BC的长度
【详解】
过点A作AD⊥BC,则△ADC和△ABD为直角三角形
∵∠C=30° AC=4cm ∴AD=2cm CD=cm
根据Rt△ABD的勾股定理可得:BD=cm
∴BC=BD+CD=()cm
本题考查直角三角形的勾股定理,解题关键在于能够构造出直角三角形.
25、(1)等腰直角;(2)结论仍成立,见解析;(3)或,.
【解析】
(1)结论:DM⊥EM,DM=EM.只要证明△AMH≌△FME,推出MH=ME,AH=EF=EC,推出DH=DE,因为∠EDH=90°,可得DM⊥EM,DM=ME;
(2)结论不变,证明方法类似;
(3)分两种情形画出图形,理由勾股定理以及等腰直角三角形的性质解决问题即可;
【详解】
解:(1) △AMN ≌ △FME ,等腰直角.
如图1中,延长EM交AD于H.
∵四边形ABCD是正方形,四边形EFGC是正方形,
∴,,
∴,
∴,
∵,,
∴△AMH≌△FME,
∴,,
∴,
∵,
∴DM⊥EM,DM=ME.
(2)结论仍成立.
如图,延长EM交DA的延长线于点H,
∵四边形ABCD与四边形CEFG都是正方形,
∴,,
∴AD∥EF,∴.
∵,,
∴△AMF≌△FME(ASA), …
∴,,∴.
在△DHE中,,,,
∴,DM⊥EM.
(3)①当E点在CD边上,如图1所示,由(1)的结论可得三角形DME为等腰直角三角形,则DM的长为,此时,所以;
②当E点在CD的延长线上时,如图2所示,由(2)的结论可得三角形DME为等腰直角三角形,则DM的长为,此时 ,所以 ;
③当E点在BC上是,如图三所示,同(1)、(2)理可得到三角形DME为等腰直角三角形,
证明如下:∵四边形ABCD与四边形CEFG都是正方形, 且点E在BC上
∴AB//EF,∴,
∵M为AF中点,∴AM=MF
∵在三角形AHM与三角形EFM中:
,
∴△AMH≌△FME(ASA),
∴,,∴.
∵在三角形AHD与三角形DCE中:
,
∴△AHD≌△DCE(SAS),
∴,
∵∠ADC=∠ADH+∠HDC=90°,
∴∠HDE=∠CDE+∠HDC=90°,
∵在△DHE中,,,,
∴三角形DME为等腰直角三角形,则DM的长为,此时在直角三角形DCE中 ,所以
本题考查的是正方形的性质、全等三角形的判定定理和性质定理以及直角三角形的性质,灵活运用相关的定理、正确作出辅助线是解题的关键.
26、(1)甲商场:y=0.7x,乙商场:当0≤x≤200时,y=x,当x>200时,y=200+0.6(x﹣200)=0.6x+80;(2)当x<800时,在甲商场购买比较省钱,当x=800时,在甲乙两商场购买花钱一样,当x>800时,在乙商场购买省钱.
【解析】
(1)根据题意可以分别求出甲乙两商场中y与x的函数关系式;
(2)根据(1)中的函数关系式和题意可以解答本题.
【详解】
.解:(1)由题意可得,
甲商场:y=0.7x,
乙商场:当0≤x≤200时,y=x,
当x>200时,y=200+0.6(x﹣200)=0.6x+80;
(2)令0.7x=0.6x+80,得x=800,
∴当x<800时,在甲商场购买比较省钱,
当x=800时,在甲乙两商场购买花钱一样,
当x>800时,在乙商场购买省钱.
本题考查一次函数的应用、一元一次不等式的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质解答.
题号
一
二
三
四
五
总分
得分
甲
乙
丙
丁
(秒)
相关试卷
这是一份重庆市秀山县2024-2025学年九上数学开学综合测试试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份重庆市江津中学2025届九上数学开学统考模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份重庆市江津区2024-2025学年数学九上开学统考试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。