搜索
    上传资料 赚现金
    英语朗读宝

    新疆沙雅县2024-2025学年数学九年级第一学期开学统考试题【含答案】

    新疆沙雅县2024-2025学年数学九年级第一学期开学统考试题【含答案】第1页
    新疆沙雅县2024-2025学年数学九年级第一学期开学统考试题【含答案】第2页
    新疆沙雅县2024-2025学年数学九年级第一学期开学统考试题【含答案】第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    新疆沙雅县2024-2025学年数学九年级第一学期开学统考试题【含答案】

    展开

    这是一份新疆沙雅县2024-2025学年数学九年级第一学期开学统考试题【含答案】,共20页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)某班抽6名同学参加体能测试,成绩分别是1,90,75,75,1,1.则这组同学的测试成绩的中位数是( )
    A.75B.1C.85D.90
    2、(4分)对于两组数据A,B,如果sA2>sB2,且,则( )
    A.这两组数据的波动相同B.数据B的波动小一些
    C.它们的平均水平不相同D.数据A的波动小一些
    3、(4分)如图,一次函数y=k1x+b1的图象l1与y=k2x+b2的图象l2相交于点P,则方程组的解是( )
    A.B.C.D.
    4、(4分)在以x为自变量, y为函数的关系式y=5πx中,常量为( )
    A.5B.πC.5πD.πx
    5、(4分)一个有进水管与出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min内既进水又出水,每分的进水量和出水量是两个常数.容器内的水量y(单位:L)与时间(单位:min)之间的关系如图所示.则每分的出水量是( )L.
    A.5B.3.75C.4D.2.5
    6、(4分)点在反比例函数的图象上,则下列各点在此函数图象上的是( ).
    A.B.C.D.
    7、(4分)若与最简二次根式是同类二次根式,则m的值为( )
    A.7B.11C.2D.1
    8、(4分)若,则下列不等式不成立的是( )
    A.B.C.D.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)一个平行四边形的一条边长为3,两条对角线的长分别为4和,则它的面积为______.
    10、(4分)将直线y=﹣2x﹣2向上平移5个单位后,得到的直线为_____.
    11、(4分)如图,已知矩形,,,点为中点,在上取一点,使的面积等于,则的长度为_______.
    12、(4分)有一个不透明的袋子里装有若干个大小相同、质地均匀的白球,由于某种原因,不允许把球全部倒出来数,但可以从中每次摸出一个进行观察.为了估计袋中白球的个数,小明再放入8个除颜色外,大小、质地均相同的红球,摇匀后从中随机摸出一个球并记下颜色,再把它放回袋中摇匀.这样不断重复摸球100次,其中有16次摸到红球,根据这个结果,可以估计袋中大约有白球_____个.
    13、(4分) “今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,问井深几何?”这是我国古代数学《九章算术》中的“井深几何”问题,它的题意可以由图获得,则井深为_____尺.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,在四边形中,,,,,、分别在、上,且,与相交于点,与相交于点.
    (1)求证:四边形为矩形;
    (2)判断四边形是什么特殊四边形?并说明理由;
    (3)求四边形的面积.
    15、(8分)如图,直线l1:y=2x+1与直线l2:y=mx+4相交于点P(1,b).
    (1)求b,m的值;
    (2)垂直于x轴的直线与直线l1,l2,分别交于点C,D,垂足为点E,设点E的坐标为(a,0)若线段CD长为2,求a的值.
    16、(8分)如图,在中,,,垂足分别为点、,且.
    求证:是菱形.
    17、(10分)电力公司为鼓励市民节约用电,采取按月电量分段收费的办法,已知某户居民每月应缴电费(元)与用电量(度)的函数图象是一条折线(如图),根据图象解答下列问题.
    (1)求出当时,与之间的函数关系式;
    (2)若该用户某月用电度,则应缴费多少元?
    18、(10分)某校八年级(1)班要从班级里数学成绩较优秀的甲、乙两位学生中选拔一人参加“全国初中数学联赛”,为此,数学老师对两位同学进行了辅导,并在辅导期间测验了6次,测验成绩如下表(单位:分):
    次数,1, 2, 3, 4, 5, 6
    甲:79,78,84,81,83,75
    乙:83,77,80,85,80,75
    利用表中数据,解答下列问题:
    (1)计算甲、乙测验成绩的平均数.
    (2)写出甲、乙测验成绩的中位数.
    (3)计算甲、乙测验成绩的方差.(结果保留小数点后两位)
    (4)根据以上信息,你认为老师应该派甲、乙哪名学生参赛?简述理由.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)如图,菱形ABCD的周长为16,若,E是AB的中点,则点E的坐标为_____________.
    20、(4分)有意义,则实数a的取值范围是__________.
    21、(4分)直线与轴、轴的交点分别为、则这条直线的解析式为__________.
    22、(4分) “今有井径五尺,不知其深,立五尺木于井上,从木末望水岸,入径四寸,问井深几何?”这是我国古代数学《九章算术》中的“井深几何”问题,它的题意可以由图获得,则井深为_____尺.
    23、(4分)某种手机每部售价为元,如果每月售价的平均降低率为,那么两个月后,这种手机每部的售价是____________元.(用含,的代数式表示)
    二、解答题(本大题共3个小题,共30分)
    24、(8分)如图,AD是等腰△ABC底边BC上的中线,点O是AC中点,延长DO到E,使OE=OD,连接AE,CE,求证:四边形ADCE的是矩形.
    25、(10分)计算:(1);(2)+(3﹣2)(3+2)
    26、(12分)某市政府为了增强城镇居民抵御大病风险的能力,积极完善城镇居民医疗保险制度,纳入医疗保险的居民的大病住院医疗费用的报销比例标准如下表:
    设享受医保的某居民一年的大病住院医疗费用为x元,按上述标准报销的金额为y元.
    (1)直接写出x≤50000时,y关于x的函数关系式,并注明自变量x的取值范围;
    (2)若某居民大病住院医疗费用按标准报销了20000元,问他住院医疗费用是多少元?
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    中位数是指将一组数据按大小顺序排列后,处在最中间的一个数(或处在最中间的两个数的平均数).
    【详解】
    解:将这组数据从小到大的顺序排列为:75,75,1,1,1,90,
    中位数是(1+1)÷2=1.
    故选:B.
    考查了确定一组数据的中位数的能力.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.注意:找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.
    2、B
    【解析】
    试题解析:方差越小,波动越小.

    数据B的波动小一些.
    故选B.
    点睛:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.
    3、A
    【解析】
    根据图象求出交点P的坐标,根据点P的坐标即可得出答案:
    ∵由图象可知:一次函数y=k1x+b1的图象l1与y=k2x+b2的图象l2的交点P的坐标是(﹣2,3),
    ∴方程组的解是.故选A.
    4、C
    【解析】
    根据常量的定义解答即可,常量是指在某一个变化过程中,固定不变的量.
    【详解】
    在以x为自变量, y为函数的关系式y=5πx中,常量为5π,
    故选:C.
    考查了变量关系中的常量的定义,熟记常量定义是解题的关键,注意π是常量.
    5、B
    【解析】
    观察函数图象找出数据,根据“每分钟进水量=总进水量÷放水时间”算出每分钟的进水量,再根据“每分钟的出水量=每分钟的进水量-每分钟增加的水量”即可算出结论.
    【详解】
    每分钟的进水量为:20÷4=5(升),
    每分钟的出水量为:5-(30-20)÷(12-4)=3.75(升).
    故选B.
    本题考查了一次函数的应用,解题的关键是根据函数图象找出数据结合数量关系列式计算.
    6、A
    【解析】
    用待定系数法确定反比例函数的解析式,再验证选项中的点是否满足解析式即可,若满足函数解析式,则在函数图像上.
    【详解】
    解:将点代入,
    ∴,
    ∴,
    ∴点在函数图象上,
    故选:A.
    本题考查了反比例函数解析式的求法及根据解析式确定点在函数图形上,会求反比例函数的解析式是解题的关键.
    7、C
    【解析】
    几个二次根式化为最简二次根式后,如果被开方数相同,则这几个二次根式即为同类二次根式.
    【详解】
    解:,当m=7时,,故A错误;当m=11时,,此时不是最简二次根式,故B错误;当m=1时,,故D错误;
    当m=2时,,故C正确;
    故选择C.
    本题考查了同类二次根式的定义.
    8、C
    【解析】
    直接根据不等式的性质进行分析判断即可得到答案.
    【详解】
    A.,则a是负数,可以看成是5<6两边同时加上a,故A选项成立,不符合题意;
    B.是不等式5<6两边同时减去a,不等号不变,故B选项成立,不符合题意;
    C.5<6两边同时乘以负数a,不等号的方向应改变,应为:,故选项C不成立,符合题意;
    D.是不等式5<6两边同时除以a,不等号改变,故D选项成立,不符合题意.
    故选C.
    本题考查的实际上就是不等式的基本性质:不等式的两边都加上(或减去)同一个数(或式子)不等号的方向不变;不等式两边同乘以(或除以)同一个正数,不等号的方向不变;
    不等式两边同乘以(或除以)同一个负数,不等号的方向改变.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、4
    【解析】
    如图所示:
    ∵四边形ABCD是平行四边形



    即两条对角线互相垂直,
    ∴这个四边形是菱形,

    故答案为
    10、y=﹣2x+3
    【解析】
    一次函数图像,即直线平移的原则是:上加下减,左加右减,据此即可求解.
    【详解】
    将直线y=﹣2x﹣2向上平移5个单位,得到直线y=﹣2x﹣2+5,即y=﹣2x+3;
    故答案为:y=﹣2x+3;
    该题主要考查了一次函数图像,即直线平移的方法:上加下减,左加右减,准确掌握平移的原则即可解题.
    11、
    【解析】
    设DP=x,根据,列出方程即可解决问题.
    【详解】
    解:设DP=x
    ∵, AD=BC=6,AB=CD=8,
    又∵点为中点
    ∴BQ=CQ=3,
    ∴18=48− ⋅x⋅6− (8−x)⋅3−⋅8⋅3,
    ∴x=4,
    ∴DP=4
    故答案为4cm
    本题考查了利用矩形的性质来列方程求线段长度,正确列出方程是解题的关键.
    12、1
    【解析】
    【分析】由口袋中有8个红球,利用红球在总数中所占比例与实验比例应该相等,列方程求出即可.
    【详解】设袋中白球有x个,
    根据题意,得:,
    解得:x=1,
    经检验:x=1是原分式方程的解,
    即估计袋中大约有白球1个,
    故答案为:1.
    【点睛】本题考查了利用频率估计概率,根据已知得出红球在总数中所占比例应该与实验比例相等是解决本题的关键.
    13、57.5
    【解析】
    根据题意有△ABF∽△ADE,再根据相似三角形的性质可求出AD的长,进而得到答案.
    【详解】
    如图,AE与BC交于点F,
    由BC //ED 得△ABF∽△ADE,
    ∴AB:AD=BF:DE,即5:AD=0.4:5,
    解得:AD=62.5(尺),
    则BD=AD-AB=62.5-5=57.5(尺)
    故答案为57.5.
    本题主要考查相似三角形的性质:两个三角形相似对应角相等,对应边的比相等.
    三、解答题(本大题共5个小题,共48分)
    14、(1)见解析;(2)四边形EFPH为矩形,理由见解析;(3)
    【解析】
    (1)由平行线的性质证出∠BCD=90°即可;
    (2)根据矩形性质得出CD=2,根据勾股定理求出CE和BE,求出CE2+BE2的值,求出BC2,根据勾股定理的逆定理求出∠BEC=90°,根据矩形的性质和平行四边形的判定,推出平行四边形DEBP和AECP,推出EH//FP,EF//HP,推出平行四边形EFPH,根据矩形的判定推出即可;
    (3)根据三角形的面积公式求出CF,求出EF,根据勾股定理求出PF,根据面积公式求出即可.
    【详解】
    (1)证明:∵AB//CD,
    ∴∠CBA+∠BCD=180°,
    ∵∠CBA=∠ADC=90°,
    ∴∠BCD=90°,
    ∴四边形ABCD是矩形;
    (2)解:四边形EFPH为矩形;理由如下:
    ∵四边形ABCD是矩形,
    ∴AD=BC=5,AB=CD=2,AD∥BC,
    由勾股定理得:CE= ,
    同理BE=2,
    ∴CE2+BE2=5+20=25,
    ∵BC2=52=25,
    ∴BE2+CE2=BC2,
    ∴∠BEC=90°,
    ∴△BEC是直角三角形.
    ∵DE=BP,DE//BP,
    ∴四边形DEBP是平行四边形,
    ∴BE//DP,
    ∵AD=BC,AD//BC,DE=BP,
    ∴AE=CP,
    ∴四边形AECP是平行四边形,
    ∴AP//CE,
    ∴四边形EFPH是平行四边形,
    ∵∠BEC=90°,
    ∴平行四边形EFPH是矩形.
    (3)解:∵四边形AECP是平行四边形,
    ∴PD=BE=2,
    在Rt△PCD中,FC⊥PD,PC=BC-BP=4,
    由三角形的面积公式得:PD•CF=PC•CD,
    ∴CF=,
    ∴EF=CE-CF=,
    ∵PF=,
    ∴S矩形EFPH=EF•PF=,
    即:四边形EFPH的面积是.
    本题综合考查了矩形的判定与性质、勾股定理及其逆定理、平行四边形的性质和判定,三角形的面积等知识点的运用,主要培养学生分析问题和解决问题的能力,此题综合性比较强,题型较好,难度也适中.
    15、(1)b=3,m=1;(2)或
    【解析】
    (1)由点P(1,b)在直线l1上,利用一次函数图象上点的坐标特征,即可求出b值,再将点P的坐标代入直线l2中,即可求出m值;
    (2)由点C、D的横坐标,即可得出点C、D的纵坐标,结合CD=2即可得出关于a的含绝对值符号的一元一次方程,解之即可得出结论.
    【详解】
    解:(1)∵点P(1,b)在直线l1:y=2x+1上,
    ∴b=2×1+1=3;
    ∵点P(1,3)在直线l2:y=mx+4上,
    ∴3=m+4,
    ∴m=.
    (2)当x=a时,yC=2a+1, yD=4a.
    ∵CD=2,
    ∴|2a+1(4a)|=2,
    解得:a=或a=.
    ∴a的值为或.
    本题考查了两条直线相交或平行问题、一次函数图象上点的坐标特征以及解含绝对值符号的一元一次方程,解题的关键是:(1)利用一次函数图象上点的坐标特征求出b、m的值;(2)根据CD=2,找出关于a的含绝对值符号的一元一次方程.
    16、见解析.
    【解析】
    利用全等三角形的性质证明AB=AD即可解决问题.
    【详解】
    是平行四边形,
    ∵AE⊥BC,AF⊥CD,
    ∴∠AEB=∠AFD=90°,
    在和中,

    ∴ABCD是菱形.
    本题考查了菱形的判定、全等三角形的判定和性质等知识,熟练掌握相关的性质与定理是解题的关键.
    17、(1);(2)用电度,应缴费元
    【解析】
    (1)本题考查的是分段函数的知识.依题意可以列出函数关系式;
    (2)根据(1)中的函数解析式以及图标即可解答.
    【详解】
    解:(1)设与的关系式为,
    射线过点、,
    ,
    解得.
    与的关系式是.
    (2)当时,
    .
    用电度,应缴费元.
    本题主要考查一次函数的应用以及待定系数法求函数解析式,解决问题的关键是从一次函数的图象上获取信息.
    18、 (1)80分,80分 ;(2)80分; (3)9.33,11.33 ;(4)派甲去.
    【解析】
    试题分析:本题考查了方差, 算术平均数, 中位数的计算.
    (1)由平均数的计算公式计算甲、乙测试成绩的平均分;
    (2)将一组数据从小到大(或从大到小)重新排列后,中间两个数的平均数是甲、乙测试成绩的中位数;
    (3)由方差的计算公式计算甲、乙测试成绩的方差;
    (4)方差越小,表明这个同学的成绩偏离平均数越小,即波动越小,成绩越稳定.
    解:(1)x甲=(分),
    x乙=(分).
    (2)甲、乙测验成绩的中位数都是80分.
    (3)=[(79-80)2+(78-80)2+(84-80)2+(81-80)2+(83-80)2+(75-80)2]≈9.33,
    =[(83-80)2+(77-80)2+(80-80)2+(85-80)2+(80-80)2+(75-80)2]≈11.33.
    (4)结合以上信息,应该派甲去,因为在平均数和中位数都相同的情况下,甲的测验成绩更稳定.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、
    【解析】
    首先求出AB的长,进而得出EO的长,再利用锐角三角函数关系求出E点横纵坐标即可.
    解:如图所示,过E作EM⊥AC,
    已知四边形ABCD是菱形,且周长为16,∠BAD=60°,根据菱形的性质可得AB=CD-BC=AD=4,AC⊥DB,∠BAO=∠BAD=30°,又因E是AB的中点,根据直角三角形中,斜边的中线等于斜边的一半可得EO=EA=EB=AB=2,根据等腰三角形的性质可得∠BAO=∠EOA=30°,由直角三角形中,30°的锐角所对的直角边等于斜边的一半可得EM=OE=1,在Rt△OME中,由勾股定理可得OM=,所以点E的坐标为(,1),
    故选B.
    “点睛”此题主要考查了菱形的性质以及锐角三角函数关系应用,根据已知得出EO的长以及∠EOA=∠EAO=30°是解题的关键.
    20、
    【解析】
    根据二次根式被开方数为非负数解答即可.
    【详解】
    依题意有,解得,
    即时,二次根式有意义,
    故的取值范围是.
    故答案为:.
    本题考查了二次根式有意义的条件,解题关键是根据题意构造不等式进行解答.
    21、y=1x+1.
    【解析】
    把(-1,0)、(0,1)代入y=kx+b得到 ,然后解方程组可.
    【详解】
    解:根据题意得

    解得,
    所以直线的解析式为y=1x+1.
    故答案为y=1x+1.
    本题考查了待定系数法求一次函数的解析式:设一次函数的解析式为y=kx+b(k、b为常数,k≠0),然后把函数图象上两个点的坐标代入得到关于k、b的方程组,然后解方程组求出k、b,从而得到一次函数的解析式.
    22、57.5
    【解析】
    根据题意有△ABF∽△ADE,再根据相似三角形的性质可求出AD的长,进而得到答案.
    【详解】
    如图,AE与BC交于点F,
    由BC //ED 得△ABF∽△ADE,
    ∴AB:AD=BF:DE,即5:AD=0.4:5,
    解得:AD=62.5(尺),
    则BD=AD-AB=62.5-5=57.5(尺)
    故答案为57.5.
    本题主要考查相似三角形的性质:两个三角形相似对应角相等,对应边的比相等.
    23、(1-x)2
    【解析】
    根据题意即可列出代数式.
    【详解】
    ∵某种手机每部售价为元,如果每月售价的平均降低率为,
    则一个月后的售价为(1-x)
    故两个月后的售价为(1-x)2
    此题主要考查列代数式,解题的关键是根据题意找到数量关系.
    二、解答题(本大题共3个小题,共30分)
    24、详见解析
    【解析】
    根据平行四边形的性质得出四边形ADCE是平行四边形,根据垂直推出∠ADC=90°,根据矩形的判定得出即可.
    【详解】
    证明:∵点O是AC中点,
    ∴AO=OC,
    ∵OE=OD,
    ∴四边形ADCE是平行四边形,
    ∵AD是等腰△ABC底边BC上的高,
    ∴∠ADC=90°,
    ∴四边形ADCE是矩形.
    本题考查了矩形的判定和性质,等腰三角形的性质,综合运用定理进行推理和计算是解此题的关键,比较典型,难度适中.
    25、(1)﹣;(2)1.
    【解析】
    (1)先把二次根式化为最简二次根式,然后合并即可;
    (2)利用二次根式的性质和平方差公式计算.
    【详解】
    解:(1)原式=1﹣9+
    =﹣;
    (2)原式=7+9﹣12
    =1.
    本题考查了二次根式的运算,正确掌握二次根式的性质是解题的关键.
    26、(1)①当x≤8000时,y=0;②当8000<x≤30000时,y=0.5x﹣4000;③当30000<x≤50000时,y=0.6x﹣7000;(2)1元.
    【解析】
    (1)首先把握x、y的意义,报销金额y分3段①当x≤8000时,②当8000<x≤30000时,③当30000<x≤50000时分别表示;
    (2)利用代入法,把y=20000代入第三个函数关系式即可得到x的值.
    【详解】
    解:(1)由题意得:
    ①当x≤8000时,y=0;
    ②当8000<x≤30000时,y=(x﹣8000)×50%=0.5x﹣4000;
    ③当30000<x≤50000时,y=(30000﹣8000)×50%+(x﹣30000)×60%=0.6x﹣7000;
    (2)当花费30000元时,报销钱数为:y=0.5×30000﹣4000=11000,
    ∵20000>11000,
    ∴他的住院医疗费用超过30000元,
    当花费是50000元时,报销钱数为:y=11000+20000×60%=23000(元),
    故花费小于5万元,
    故把y=20000代入y=0.6x﹣7000中得:
    20000=0.6x﹣7000,
    解得:x=1.
    答:他住院医疗费用是1元.
    本题考查一次函数的应用;分段函数.
    题号





    总分
    得分
    医疗费用范围
    报销比例标准
    不超过8000元
    不予报销
    超过8000元且不超过30000元的部分
    50%
    超过30000元且不超过50000元的部分
    60%
    超过50000元的部分
    70%

    相关试卷

    新疆沙湾县2024-2025学年数学九年级第一学期开学统考模拟试题【含答案】:

    这是一份新疆沙湾县2024-2025学年数学九年级第一学期开学统考模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    新疆阿克苏沙雅县2024年九上数学开学质量检测模拟试题【含答案】:

    这是一份新疆阿克苏沙雅县2024年九上数学开学质量检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    陕西史上最全的2024-2025学年九年级数学第一学期开学统考模拟试题【含答案】:

    这是一份陕西史上最全的2024-2025学年九年级数学第一学期开学统考模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map