搜索
    上传资料 赚现金
    英语朗读宝

    泰兴市黄桥2024-2025学年九上数学开学监测模拟试题【含答案】

    泰兴市黄桥2024-2025学年九上数学开学监测模拟试题【含答案】第1页
    泰兴市黄桥2024-2025学年九上数学开学监测模拟试题【含答案】第2页
    泰兴市黄桥2024-2025学年九上数学开学监测模拟试题【含答案】第3页
    还剩23页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    泰兴市黄桥2024-2025学年九上数学开学监测模拟试题【含答案】

    展开

    这是一份泰兴市黄桥2024-2025学年九上数学开学监测模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)已知一组数据:1,2,8,,7,它们的平均数是1.则这组数据的中位数是( )
    A.7B.1C.5D.4
    2、(4分)一元二次方程的根是( )
    A.x  0B.x  1C.x  0, x  1D.无实根
    3、(4分)菱形的对角线长分别为6和8,则该菱形的面积是( )
    A.24B.48C.12D.10
    4、(4分)为了保障艺术节表演的整体效果,某校在操场中标记了几个关键位置,如图是利用平面直角坐标系画出的关键位置分布图,若这个坐标系分别以正东、正北方向为x轴、y轴的正方向,表示点A的坐标为,表示点B的坐标为,则表示其他位置的点的坐标正确的是( )
    A.B.C.D.
    5、(4分)若关于x的分式方程=1的解为正数,则m的取值范围是( )
    A.m>3B.m≠-2C.m>-3且m≠1D.m>-3且m≠-2
    6、(4分)在,,,,中,分式的个数是( )
    A.1B.2C.3D.4
    7、(4分)已知一次函数的图象与轴交于点,且随自变量的增大而减小,则关于的不等式的解集是( )
    A.B.C.D.
    8、(4分)如图,平行四边形,对角线交于点,下列选项错误的是( )
    A.互相平分
    B.时,平行四边形为矩形
    C.时,平行四边形为菱形
    D.时,平行四边形为正方形
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)在盒子里放有三张分别写有整式a+1、a+2、2的卡片,从中随机抽取两张卡片,把两张卡片上的整式分别作为分子和分母,则能组成分式的概率是_____.
    10、(4分)菱形的两条对角线长分别为cm和cm,则该菱形的面积__________.
    11、(4分)如图,在平行四边形中,,,,则______.
    12、(4分)在平行四边形ABCD中,对角线AC、BD相交于点O,如果AC=14,BD=8,AB=x,那么的取值范围是__________.
    13、(4分)如图,一次函数y=kx+b的图象与x轴相交于点(﹣2,0),与y轴相交于点(0,3),则关于x的方程kx=b的解是_____.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)如图,已知△ABC中,AD是边BC上的中线,过点A作AE∥BC,过点D作DE∥AB,DE与AC、AE分别交于点O、点E,联结EC.
    (1)求证:四边形ADCE是平行四边形;
    (2)当∠BAC=90°时,求证:四边形ADCE是菱形.
    15、(8分)在正方形AMFN中,以AM为BC边上的高作等边三角形ABC,将AB绕点A逆时针旋转90°至点D,D点恰好落在NF上,连接BD,AC与BD交于点E,连接CD,
    (1)如图1,求证:△AMC≌△AND;
    (2)如图1,若DF=,求AE的长;
    (3)如图2,将△CDF绕点D顺时针旋转(),点C,F的对应点分别为、,连接、,点G是的中点,连接AG,试探索是否为定值,若是定值,则求出该值;若不是,请说明理由.
    16、(8分)如图,在中,分别平分和,交于点,线段相交于点M.
    (1)求证:;
    (2)若,则的值是__________.
    17、(10分)在平面直角坐标系中,规定:抛物线y=a(x−h) +k的关联直线为y=a(x−h)+k.
    例如:抛物线y=2(x+1) −3的关联直线为y=2(x+1)−3,即y=2x−1.
    (1)如图,对于抛物线y=−(x−1) +3.
    ①该抛物线的顶点坐标为___,关联直线为___,该抛物线与其关联直线的交点坐标为___和___;
    ②点P是抛物线y=−(x−1) +3上一点,过点P的直线PQ垂直于x轴,交抛物线y=−(x−1) +3的关联直线于点Q.设点P的横坐标为m,线段PQ的长度为d(d>0),求当d随m的增大而减小时,d与m之间的函数关系式,并写出自变量m的取值范围。
    (2)顶点在第一象限的抛物线y=−a(x−1) +4a与其关联直线交于点A,B(点A在点B的左侧),与x轴负半轴交于点C,直线AB与x轴交于点D,连结AC、BC.
    ①求△BCD的面积(用含a的代数式表示).
    ②当△ABC为钝角三角形时,直接写出a的取值范围。
    18、(10分)甲乙两车沿直路同向匀速行驶,甲、乙两车在行驶过程中离乙车出发地的路程与出发的时间的函数关系加图1所示,两车之间的距离与出发的时间的函数关系如图2所示.
    (1)图2中__________,__________;
    (2)请用待定系数法求、关于的函数解析式;(不用写自变量取值范围)
    (3)出发多长时间,两车相距?
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)某商品经过连续两次降价,售价由原来的25元/件降到16元/件,则平均每次降价的百分率为_____.
    20、(4分)分式与的最简公分母是_________.
    21、(4分)若是整数,则最小的正整数n的值是_____________。
    22、(4分)如图,在矩形ABCD中,AB=6cm,BC=8cm,现将其沿EF对折,使得点C与点A重合,点D落在处,AF的长为___________.
    23、(4分)如图,在▱ABCD中,,,则______.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)在平面直角坐标系xOy中,点P到封闭图形F的“极差距离”D(P,W)定义如下:任取图形W上一点Q,记PQ长度的最大值为M,最小值为m(若P与Q重合,则PQ=0),则“极差距离”D(P,W)=M﹣m.如图,正方形ABCD的对角线交点恰与原点O重合,点A的坐标为(2,2)
    (1)点O到线段AB的“极差距离”D(O,AB)=______.点K(5,2)到线段AB的“极差距离”D(K,AB)=______.
    (2)记正方形ABCD为图形W,点P在x轴上,且“极差距离”D(P,W)=2,求直线AP的解析式.
    25、(10分)如图,在中,,、分别是、的中点,连接,过作交的延长线于.
    (1)证明:四边形是平行四边形;
    (2)若四边形的周长是,的长为,求线段的长度.
    26、(12分)季末打折促销,甲乙两商场促销方式不同,两商场实际付费(元)与标价(元)之间的函数关系如图所示折线(虚线)表示甲商场,折线表示乙商场
    (1)分别求射线的解析式.
    (2)张华说他必须选择乙商场,由此推理张华计划购物所需费用(元)(标价)的范围是______.
    (3)李明说他必须选择甲商场,由此推理李明计划购物所需费用(元)(标价)的范围是______.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、A
    【解析】
    分析:首先根据平均数为1求出x的值,然后根据中位数的概念求解.
    详解:由题意得:1+2+8+x+2=1×5,解得:x=2,这组数据按照从小到大的顺序排列为:2,1,2,2,8,则中位数为2.
    故选A.
    点睛:本题考查了中位数和平均数的知识,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数;平均数是指在一组数据中所有数据之和再除以数据的个数.
    2、C
    【解析】
    先移项得到,再把方程左边分解因式得到,原方程转化为或,然后解两个一元一次方程即可.
    【详解】


    或,
    ,.
    故选:.
    本题考查了解一元二次方程-因式分解法:先把方程右边变形为0,再把方程左边分解为两个一次式的乘积,这样原方程转化为两个一元一次方程,然后解一次方程即可得到一元二次方程的解.
    3、A
    【解析】
    由菱形的两条对角线的长分别是6和8,根据菱形的面积等于对角线积的一半,即可求得答案.
    【详解】
    解:∵菱形的两条对角线的长分别是6和8,
    ∴这个菱形的面积是:×6×8=1.
    故选:A.
    此题考查了菱形的性质.菱形的面积等于对角线积的一半是解此题的关键.
    4、B
    【解析】
    正确建立平面直角坐标系,根据平面直角坐标系,找出相应的位置,然后写出坐标即可.
    【详解】
    建立平面直角坐标系,如图:
    则 .
    表示正确的点的坐标是点D.
    故选B.
    本题主要考查坐标确定位置,确定坐标原点和x,y轴的位置及方向,正确建立平面直角坐标系是解题关键.
    5、D
    【解析】
    先解分式方程,然后根据分式方程的解得情况和方程的增根列出不等式,即可得出结论.
    【详解】
    解:去分母得,m+1=x-1,
    解得,x=m+3,
    ∵方程的解是正数,
    ∴m+3>0,
    解这个不等式得,m>-3,
    ∵m+3-1≠0,
    ∴m≠-1,
    则m的取值范围是m>-3且m≠-1.
    故选:D.
    此题考查的是根据分式方程解的情况,求参数的取值范围,掌握分式方程的解法和分式方程的增根是解决此题的关键.
    6、B
    【解析】
    判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.
    【详解】
    解:,的分母中含有字母是分式,其他的分母中不含有字母不是分式,
    故选:B.
    考查了分式的定义,一般地,如果A,B表示两个整式,并且B中含有字母,那么式子 叫做分式.
    7、B
    【解析】
    根据一次函数随自变量的增大而减小,再根据一次函数与不等式的关系即可求解.
    【详解】
    随自变量的增大而减小,
    当时,,
    即关于的不等式的解集是.
    故选:.
    此题主要考查一次函数与不等式的关系,解题的关键是熟知一次函数的图像.
    8、D
    【解析】
    根据平行四边形、矩形、菱形和正方形的性质,逐一判定即可得解.
    【详解】
    A选项,根据平行四边形对角线互相平分的性质,即可判定正确;
    B选项,对角线相等的平行四边形是矩形,正确;
    C选项,对角线互相垂直的平行四边形为菱形,正确;
    D选项,并不能判定其为正方形;
    故答案为D.
    此题主要考查平行四边形、矩形、菱形和正方形的判定,熟练掌握,即可解题.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、.
    【解析】
    解:画树状图得:
    ∴一共有6种等可能的结果,把两张卡片上的整式分别作为分子和分母,能组成分式的有4个,
    ∴能组成分式的概率是
    故答案为.
    此题考查了列表法或树状图法求概率.注意树状图法与列表法可以不重不漏的表示出所有等可能的结果.用到的知识点为:概率=所求情况数与总情况数之比.
    10、
    【解析】
    根据菱形的面积等于两对角线乘积的一半即可求得其面积.
    【详解】
    由已知得,菱形面积=.
    故答案为: .
    此题考查菱形的性质,解题关键在于掌握运算公式.
    11、
    【解析】
    根据平行四边形的性质可得AB=10,BC=AD=6,由BC⊥AC,根据勾股定理求得AC的长,即可求得OA长,再由勾股定理求得OB的长,即可求得BD的长.
    【详解】
    ∵四边形ABCD是平行四边形,
    ∴BC=AD=6,OB=OD,OA=OC,
    ∵AC⊥BC,
    ∴AC==8,
    ∴OC=4,
    ∴OB==2,
    ∴BD=2OB=4
    故答案为:4.
    本题考查了平行四边形的性质以及勾股定理,熟练运用平行四边形的性质及勾股定理是解决本题的关键.
    12、3<x<1
    【解析】
    根据平行四边形的性质易知OA=7,OB=4,根据三角形三边关系确定范围.
    【详解】
    ∵ABCD是平行四边形,AC=14,BD=8,
    ∴OA=AC=7,OB=BD=4,
    ∴7−4<x<7+4,即3<x<1.
    故答案为:3<x<1.
    此题考查了平行四边形的性质及三角形三边关系定理,有关“对角线范围”的题,应联系“三角形两边之和、差与第三边关系”知识点来解决.
    13、x=1
    【解析】
    依据待定系数法即可得到k和b的值,进而得出关于x的方程kx=b的解.
    【详解】
    解:∵一次函数y=kx+b的图象与x轴相交于点(﹣1,0),与y轴相交于点(0,3),
    ∴ ,
    解得,
    ∴关于x的方程kx=b即为:x=3,
    解得x=1,
    故答案为:x=1.
    本题主要考查了待定系数法的应用,任何一元一次方程都可以转化为ax+b=0 (a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.
    三、解答题(本大题共5个小题,共48分)
    14、(1)见解析;(2)四边形ADCE是菱形,见解析.
    【解析】
    (1)先证四边形ABDE是平行四边形,再证四边形ADCE是平行四边形;
    (2)由∠BAC=90°,AD是边BC上的中线,即得AD=BD=CD,证得四边形ADCE是平行四边形,即证;
    【详解】
    (1)证明:∵AE∥BC,DE∥AB,
    ∴四边形ABDE是平行四边形,
    ∴AE=BD,
    ∵AD是边BC上的中线,
    ∴BD=DC,
    ∴AE=DC,
    又∵AE∥BC,
    ∴四边形ADCE是平行四边形,
    (2)∵∠BAC=90°,AD是边BC上的中线.
    ∴AD=CD,
    ∵四边形ADCE是平行四边形,
    ∴四边形ADCE是菱形
    本题考查了平行四边形的判定和性质,(1)证得四边形ABDE,四边形ADCE为平行四边形即得;(2)由∠BAC=90°,AD上斜边BC上的中线,即得AD=BD=CD,证得四边形ADCE是平行四边形,从而证得四边形ADCE是菱形.
    15、(1)见解析;(2)AE=;(3)(3),理由见解析.
    【解析】
    (1)运用四边形AMFN是正方形得到判断△AMC,△AND是Rt△,进一步说明△ABC是等边三角形,在结合旋转的性质,即可证明.
    (2)过E作EG⊥AB于G,在BC找一点H,连接DH,使BH=HD,设AG=,则AE= GE=,得到△GBE是等腰直角三角形和∠DHF=30°,再结合直角三角形的性质,判定Rt△AMC≌Rt△AND,最后通过计算求得AE的长;
    (3)延长F1G到M,延长BA交的延长线于N,使得,可得≌,从而得到 ,可知∥, 再根据题意证明≌,进一步说明是等腰直角三角形,然后再使用勾股定理求解即可.
    【详解】
    (1)证明:∵四边形AMFN是正方形,
    ∴AM=AN ∠AMC=∠N=90°
    ∴△AMC,△AND是Rt△
    ∵△ABC是等边三角形
    ∴AB=AC
    ∵旋转后AB=AD
    ∴AC=AD
    ∴Rt△AMC≌Rt△AND(HL)
    (2)过E作EG⊥AB于G,在BC找一点H,连接DH,使BH=HD,
    设AG=
    则AE= GE=
    易得△GBE是等腰直角三角形
    ∴BG=EG=
    ∴AB=BC=
    易得∠DHF=30°
    ∴HD=2DF= ,HF=
    ∴BF=BH+HF=
    ∵Rt△AMC≌Rt△AND(HL)
    ∴易得CF=DF=
    ∴BC=BF-CF=


    ∴AE=
    (3);
    理由:如图2中,延长F1G到M,延长BA交的延长线于N,使得,则≌,
    ∴ ,
    ∴∥,



    ∴,

    ∴≌(SAS)


    ∴是等腰直角三角形



    本题考查正方形的性质、三角形全等、以及勾股定理等知识点,综合性强,难度较大,但解答的关键是正确做出辅助线.
    16、(1)略;(2);
    【解析】
    (1)想办法证明∠BAE+∠ABF=10°,即可推出∠AMB=10°即AE⊥BF;
    (2)证明DE=AD,CF=BC,再利用平行四边形的性质AD=BC,证出DE=CF,得出DF=CE,由已知得出BC=AD=5EF,DE=5EF,求出DF=CE=4EF,得出AB=CD=1EF,即可得出结果.
    【详解】
    (1)证明:∵在平行四边形ABCD中,AD∥BC,
    ∴∠DAB+∠ABC=180°,
    ∵AE、BF分别平分∠DAB和∠ABC,
    ∴∠DAB=2∠BAE,∠ABC=2∠ABF,
    ∴2∠BAE+2∠ABF=180°,即∠BAE+∠ABF=10°,
    ∴∠AMB=10°,
    ∴AE⊥BF;
    (2)解:∵在平行四边形ABCD中,CD∥AB,
    ∴∠DEA=∠EAB,
    又∵AE平分∠DAB,
    ∴∠DAE=∠EAB,
    ∴∠DEA=∠DAE,
    ∴DE=AD,同理可得,CF=BC,
    又∵在平行四边形ABCD中,AD=BC,
    ∴DE=CF,
    ∴DF=CE,
    ∵EF=AD,
    ∴BC=AD=5EF,
    ∴DE=5EF,
    ∴DF=CE=4EF,
    ∴AB=CD=1EF,
    ∴BC:AB=5:1;
    故答案为5:1.
    本题考查平行四边形的性质、角平分线的定义,等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
    17、(1)①(1,3),y=−x+4,(1,3)和(2,2);②当m

    相关试卷

    江苏省泰州市泰兴市黄桥教育联盟2024-2025学年数学九上开学达标检测模拟试题【含答案】:

    这是一份江苏省泰州市泰兴市黄桥教育联盟2024-2025学年数学九上开学达标检测模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    江苏省泰州市泰兴市黄桥教育联盟2024-2025学年九年级数学第一学期开学复习检测模拟试题【含答案】:

    这是一份江苏省泰州市泰兴市黄桥教育联盟2024-2025学年九年级数学第一学期开学复习检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024-2025学年江苏省泰兴市黄桥中学九年级数学第一学期开学统考模拟试题【含答案】:

    这是一份2024-2025学年江苏省泰兴市黄桥中学九年级数学第一学期开学统考模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map