


沈阳市重点中学2025届九年级数学第一学期开学调研模拟试题【含答案】
展开
这是一份沈阳市重点中学2025届九年级数学第一学期开学调研模拟试题【含答案】,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)等腰三角形的两条边长分别为2和5,那么这个三角形的周长为( )
A.4+5B.2+10
C.4+5或2+10D.4+10
2、(4分)若二次函数的图象经过点P(-2,4),则该图象必经过点( )
A.(2,4)B.(-2,-4)C.(-4,2)D.(4,-2)
3、(4分)数据按从小到大排列为1,2,4,x,6,9,这组数据的中位数为5,那么这组数据的众数是( )
A.4B.5C.5.5D.6
4、(4分)下列窗花图案中,是轴对称图形的是( )
A.B.
C.D.
5、(4分)如图,在▱ABCD中,已知,,AE平分交BC于点E,则CE长是
A.8cmB.5cmC.9cmD.4cm
6、(4分)下列各式中,最简二次根式是( )
A.B.C.D.
7、(4分)小明得到育才学校数学课外兴趣小组成员的年龄情况统计如下表:
那么对于不同x的值,则下列关于年龄的统计量不会发生变化的是( )
A.众数,中位数B.中位数,方差C.平均数,中位数D.平均数,方差
8、(4分)利用一次函数y=kx+b(k≠0)的图象解关于x的不等式kx+b≤0,若它的解集是x≥﹣2,则一次函数y=kx+b的图象为( )
A.B.
C.D.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)甲、乙两人面试和笔试的成绩如下表所示:
某公司认为,招聘公关人员,面试成绩应该比笔试成绩重要,如果面试和笔试的权重分别是6和4,根据两人的平均成绩,这个公司将录取________。
10、(4分)2019年1月18日,重庆经开区新时代文明实践“五进企业”系列活动----2019年新春游园会成功矩形,这次新春游园会的门票分为个人票和团体票两大类其中个人票设置有三种,票得种类 夜票(A) 平日普通票(B)指定日普通票(C)某社区居委会欲购买个人票100张,其中B种票的张数是A种票的3倍还多8张,设购买A种票的张数为x,C种票张数为y,则化简后y与x之间的关系式为:_______(不必写出x的取值范围)
11、(4分)已知一次函数y=ax+b的图象经过点(﹣2,0)和点(0,﹣1),则不等式ax+b>0的解集是_____.
12、(4分)一组数据1,2,a,4,5的平均数是3,则这组数据的方差为_____.
13、(4分)分解因式:4-m2=_____.
三、解答题(本大题共5个小题,共48分)
14、(12分)安德利水果超市购进一批时令水果,20天销售完毕,超市将本次销售情况进行了跟踪记录,根据所记录的数据可绘制如图所示的函数图象,其中日销售量(千克)与销售时间(天)之间的函数关系如图甲所示,销售单价(元/千克)与销售时间(天)之间的函数关系如图乙所示。
(1)直接写出与之间的函数关系式;
(2)分别求出第10天和第15天的销售金额。
(3)若日销售量不低于24千克的时间段为“最佳销售期”,则此次销售过程中“最佳销售期”共有多少天?在此期间销售单价最高为多少元?
15、(8分) (1)解方程:;
(2)解不等式:2(x-6)+4≤3x-5,并将它的解集在数轴上表示出来.
16、(8分)如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE,求证:∠DAE=∠ECD.
17、(10分)已知,利用因式分解求的值.
18、(10分)如图是由25个边长为1的小正方形组成的网格,请在图中画出以为斜边的2个面积不同的直角三角形.(要求:所画三角形顶点都在格点上)
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)我们把顺次连接任意一个四边形各边中点所得的四边形叫做中点四边形,如果四边形的中点四边形是矩形,则对角线_____.
20、(4分)如图,平行四边形ABCD中,AE⊥CD于E,∠B=50°,则∠DAE= ______.
21、(4分)已知,化简________
22、(4分)某厂去年1月份的产值为144万元,3月份下降到100万元,求这两个月平均每月产值降低的百分率.如果设平均每月产值降低的百分率是x,那么列出的方程是___.
23、(4分)某中学规定学生的学期体育成绩满分为100分,其中早锻炼及体育课外活动占20%,期中考试成绩占30%,期末考试成绩占50%,小桐的三项成绩(百分制)依次为95,90,1.则小桐这学期的体育成绩是__________.
二、解答题(本大题共3个小题,共30分)
24、(8分)如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB上的中点,连接DE并延长至点F,使EF=2DE,连接CE、AF
(1)证明:AF=CE;
(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.
25、(10分)如图,在正方形网格中,每个小正方形的边长为1个单位长度。平面直角坐标系xOy的原点O在格点上,x轴、y轴都在格线上。线段AB的两个端点也在格点上。
(1)若将线段AB绕点O顺时针旋转90°得到线段A’B’。试在图中画出线段A’B’。
(2)若线段A’’B’’与线段A’B’关于y轴对称,请画出线段A’’B’’。
(3)若点P是此平面直角坐标系内的一点,当点A、 B’、B’’、P四边围成的四边形为平行四边形时,请你直接写出点P的坐标。
26、(12分)已知:如图,平行四边形ABCD的对角线相交于点O,点E在边BC的延长线上,且OE=OB,联结DE.
(1)求证:DE⊥BE;
(2)设CD与OE交于点F,若OF2+FD2=OE2,CE=3,DE=4,求线段CF的长.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、B
【解析】
∵该图形为等腰三角形,
∴有两边相等.
假设腰长为2,
∵2+2<5,
∴不符合三角形的三边关系,故此情况不成立.
假设腰长为5,
∵2+5﹥5,
∴满足三角形的三边关系,成立,
∴三角形的周长为2+10.
综上所述:这个三角形的周长为2+10.
故选B.
点睛: 此题主要考查了实数的运算、三角形的三边关系及等腰三角形的性质,解决本题的关键是注意对等腰三角形的边进行讨论.
2、A
【解析】
根据点在曲线上,点的坐标满足方程的关系,将P(-2,4)代入,得,
∴二次函数解析式为.
∴所给四点中,只有(2,4)满足.故选A.
3、D
【解析】
试题分析:因为数据的中位数是5,所以(4+x)÷2=5,得x=1,则这组数据的众数为1.故选D.
考点:1.众数;2.中位数.
4、A
【解析】
根据轴对称图形的概念求解.
【详解】
解:A、是轴对称图形,符合题意;
B、不是轴对称图形,不合题意;
C、不是轴对称图形,不合题意;
D、不是轴对称图形,不合题意.
故选:A.
本题考查了轴对称图形的识别,熟练掌握基本概念是解题的关键.
5、B
【解析】
直接利用平行四边形的性质得出,,进而结合角平分线的定义得出,进而得出,求出EC的长即可.
【详解】
解:四边形ABCD是平行四边形,
,,
平分交BC于点E,
,
,
,
,
,
.
故选B.
此题主要考查了平行四边形的性质以及角平分线的定义,正确得出是解题关键.
6、C
【解析】
根据最简二次根式的定义逐个判断即可.最简二次根式满足两个条件,一是被开方式不含能开的尽方的因式,二是被开方式不含分母.
【详解】
A、 =,不是最简二次根式,故本选项不符合题意;
B、=2,不是最简二次根式,故本选项不符合题意;
C、是最简二次根式,故本选项符合题意;
D、=2,不是最简二次根式,故本选项不符合题意;
故选C.
本题考查了最简二次根式的定义,能熟记最简二次根式的定义的内容是解此题的关键.
7、A
【解析】
由频数分布表可知后两组的频数和为10,即可得知总人数,结合前两组的频数知出现次数最多的数据及第15、16个数据的平均数,可得答案.
【详解】
由表可知,年龄为15岁与年龄为16岁的频数和为x+10-x=10,
则总人数为:5+15+10=30,
故该组数据的众数为14岁,中位数为:=14岁,
即对于不同的x,关于年龄的统计量不会发生改变的是众数和中位数,
故选A.
本题主要考查频数分布表及统计量的选择,由表中数据得出数据的总数是根本,熟练掌握平均数、中位数、众数及方差的定义和计算方法是解题的关键.
8、C
【解析】
找到当x≥﹣2函数图象位于x轴的下方的图象即可.
【详解】
∵不等式kx+b≤0的解集是x≥﹣2,
∴x≥﹣2时,y=kx+b的图象位于x轴的下方,C选项符合,
故选:C.
本题考查一次函数与一元一次不等式,解不等式的方法:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、乙
【解析】
根据题意先算出甲、乙两位候选人的加权平均数,再进行比较,即可得出答案.
【详解】
甲的平均成绩为:(86×6+90×4)÷10=87.6(分),
乙的平均成绩为:(92×6+83×4)÷10=88.4(分),
因为乙的平均分数最高,
所以乙将被录取.
故答案为乙.
此题考查了加权平均数的计算公式,注意,计算平均数时按6和4的权进行计算.
10、
【解析】
根据题意,A种票的张数为x张,则B种票(3x+8)张,C种为y张,由总数为100张,列出等式即可.
【详解】
解:由题可知,,
∴.
故答案为:.
本题考查了函数关系式,根据数量关系,找准函数关系式是解题的关键.
11、x<﹣2
【解析】
根据点A和点B的坐标得到一次函数图象经过第二、三、四象限,根据函数图象得到当x>-2时,图象在x轴上方,即y>1.
【详解】
解:∵一次函数y=ax+b的图象经过(-2,1)和点(1,-1),
∴一次函数图象经过第二、三、四象限,
∴当x<-2时,y>1,即ax+b>1,
∴关于x的不等式ax+b<1的解集为x<-2.故答案为:x<-2.
本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)1的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
12、1
【解析】
由平均数的公式得:(51+1+x+4+5)÷5=3,
解得x=3;
∴方差=[(1-3)1+(1-3)1+(4-3)1+(3-3)1+(5-3)1]÷5=1;
故答案是:1.
13、(2+m)(2−m)
【解析】
原式利用平方差公式分解即可.
【详解】
解:原式=(2+m)(2−m),
故答案为:(2+m)(2−m).
此题考查了因式分解−运用公式法,熟练掌握平方差公式是解本题的关键.
三、解答题(本大题共5个小题,共48分)
14、(1);(2)200元,270元;(3)“最佳销售期”共有5天,销售单价最高为9.6元 .
【解析】
(1)分两种情况进行讨论:①0≤x≤15;②15<x≤20,针对每一种情况,都可以先设出函数的解析式,再将已知点的坐标代入,利用待定系数法求解;
(2)日销售金额=日销售单价×日销售量.由于第10天和第15天在第10天和第20天之间,当10≤x≤20时,设销售单价p(元/千克)与销售时间x(天)之间的函数关系式为p=mx+n,由点(10,10),(20,8)在p=mx+n的图象上,利用待定系数法求得p与x的函数解析式,继而求得10天与第15天的销售金额;
(3)日销售量不低于1千克,即y≥1.先解不等式2x≥1,得x≥12,再解不等式-6x+120≥1,得x≤16,则求出“最佳销售期”共有5天;然后根据p=x+12(10≤x≤20),利用一次函数的性质,即可求出在此期间销售时单价的最高值.
【详解】
解:(1) 分两种情况:
①当0≤x≤15时,设日销售量y与销售时间x的函数解析式为y=k1x,
∵直线y=k1x过点(15,30),
∴15k1=30,解得k1=2,
∴y=2x(0≤x≤15);
②当15<x≤20时,设日销售量y与销售时间x的函数解析式为y=k2x+b,
∵点(15,30),(20,0)在y=k2x+b的图象上,
∴ ,解得: ,
∴y=-6x+120(15<x≤20);
综上,可知y与x之间的函数关系式为:
(2) )∵第10天和第15天在第10天和第20天之间,
∴当10≤x≤20时,设销售单价p(元/千克)与销售时间x(天)之间的函数解析式为p=mx+n,
∵点(10,10),(20,8)在p=mx+n的图象上,
∴ ,解得: ,
∴(10≤x≤20),
当时,销售单价为10元,销售金额为10×20=200(元);当时,销售单价为9元,销售金额为9×30=270(元);
(3) 若日销售量不低于1千克,则,当时,,由得;当时,,由,得,∴,
∴“最佳销售期”共有16-12+1=5(天).
∵,,
∴随的增大而减小,∴当时,
取12时有最大值,此时,即销售单价最高为9.6元 .
故答案为:(1);(2)200元,270元;(3)“最佳销售期”共有5天,销售单价最高为9.6元 .
本题考查一次函数的应用,有一定难度.解题的关键是理解题意,利用待定系数法求得函数解析式,注意数形结合思想与函数思想的应用.
15、(1)x=;(2)x≥-3.
【解析】
分析:(1)首先找出最简公分母,再去分母进而解方程得出答案;
(2)首先去括号,进而解不等式得出答案.
详解:(1)去分母得:x=3(x-3),
解得:x=,
检验:x=时,x(x-3)≠0,则x=是原方程的根;
(2)2(x-6)+4≤3x-5
2x-12+4≤3x-5,
解得:x≥-3,
如图所示:
.
点睛:此题主要考查了解分式方程以及解不等式,正确掌握解题步骤是解题关键.
16、见解析,
【解析】
要证∠DAE=∠ECD.需先证△ADF≌△CEF,由折叠得BC=EC,∠B=∠AEC,由矩形得BC=AD,∠B=∠ADC=90°,再根据等量代换和对顶角相等可以证出,得出结论.
【详解】
证明:由折叠得:BC=EC,∠B=∠AEC,
∵矩形ABCD,
∴BC=AD,∠B=∠ADC=90°,
∴EC=DA,∠AEC=∠ADC=90°,
又∵∠AFD=∠CFE,
∴△ADF≌△CEF (AAS)
∴∠DAE=∠ECD.
本题考查折叠的性质、矩形的性质、全等三角形的性质和判定等知识,借助于三角形全等证明线段相等和角相等是常用的方法.
17、75.
【解析】
原式分解因式后,将已知等式代入计算即可求出值.
【详解】
原式
此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
18、见解析
【解析】
根据勾股定理逆定理,结合网格结构,作出一个直角边分别为2,4的直角三角形或者作出一个直角边都为的直角三角形即可
【详解】
考查勾股定理,在直角三角形中,两条直角边的平方和等于斜边的平方.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、⊥
【解析】
作出图形,根据三角形的中位线定理可得GH∥AC,同理可得EF∥AC,HG∥EF,HE∥GF,可得中点四边形是平行四边形,要想保证中点四边形是矩形,需要对角线互相垂直.
【详解】
解:∵H、G,分别为AD、DC的中点,
∴HG∥AC,
同理EF∥AC,
∴HG∥EF;
同理可知HE∥GF.
∴四边形EFGH是平行四边形.
当AC⊥BD时,AC⊥EH.
∴GH⊥EH.
∴∠EHG=90°.
∴四边形EFGH是矩形.
故答案为:⊥.
本题考查了三角形的中位线定理,矩形的判定,熟练运用三角形的中位线定理是解题的关键.
20、40°.
【解析】
根据平行四边形的对角相等求∠D,由AE⊥CD,利用直角三角形两锐角互余求∠DAE.
【详解】
解:∵四边形ABCD为平行四边形,
∴∠D=∠B=50°,
又∵AE⊥CD,
∴∠DAE=90°-∠D=40°.
故答案为:40°.
本题考查平行四边形的性质,注意掌握平行四边形的两组对角分别相等,直角三角形的两锐角互余.
21、
【解析】
根据二次根式的性质得出|a−b|,根据绝对值的意义求出即可.
【详解】
∵a<0<b,
∴|a−b|=b−a.
故答案为:.
本题主要考查对二次根式的性质,绝对值等知识点的理解和掌握,能根据二次根式的性质正确进行计算是解此题的关键.
22、144(1﹣x)2=1.
【解析】
设平均每月产值降低的百分率是x,那么2月份的产值为144(1-x)万元,3月份的产值为144(1-x)2万元,然后根据3月份的产值为1万元即可列出方程.
【详解】
设平均每月产值降低的百分率是x,则2月份的产值为144(1﹣x)万元,3月份的产值为144(1﹣x)2万元,
根据题意,得144(1﹣x)2=1.
故答案为144(1﹣x)2=1.
本题考查由实际问题抽象出一元二次方程-求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.得到3月份的产值的等量关系是解决本题的关键.
23、2.5
【解析】
根据题意,求小桐的三项成绩的加权平均数即可.
【详解】
95×20%+90×30%+1×50%=2.5(分),
答:小桐这学期的体育成绩是2.5分.
故答案是:2.5
本题主要考查加权平均数,掌握加权平均数的意义,是解题的关键.
二、解答题(本大题共3个小题,共30分)
24、(1)证明见解析;(2)四边形ACEF是菱形,理由见解析.
【解析】
(1)由三角形中位线定理得出DE∥AC,AC=2DE,求出EF∥AC,EF=AC,得出四边形ACEF是平行四边形,即可得出AF=CE;
(2)由直角三角形的性质得出∠BAC=60°,AC=AB=AE,证出△AEC是等边三角形,得出AC=CE,即可得出结论.
【详解】
试题解析:(1)∵点D,E分别是边BC,AB上的中点,∴DE∥AC,AC=2DE,
∵EF=2DE,∴EF∥AC,EF=AC,∴四边形ACEF是平行四边形,∴AF=CE;
(2)当∠B=30°时,四边形ACEF是菱形;理由如下:
∵∠ACB=90°,∠B=30°,∴∠BAC=60°,AC=AB=AE,∴△AEC是等边三角形,∴AC=CE,
又∵四边形ACEF是平行四边形,∴四边形ACEF是菱形.
本题考查了平行四边形的判定与性质、菱形的判定、三角形中位线定理、直角三角形斜边上的中线性质、等边三角形的判定与性质等,结合图形,根据图形选择恰当的知识点是关键.
25、(1)见解析;(2)见解析;(3)(3)P 点坐标为(−4,1)、(4,1)、(0,−5).
【解析】
(1)利用网格特点和旋转的性质画出点A、B的对应点A′、B′,从而得到线段A′B′;
(2)利用关于y轴对称的点的坐标特征写出A″、B″点的坐标,然后描点即可得到线段A″B″;
(3)分别以AB″、AB′和B″B′为对角线画平行四边形,从而得到P点位置,然后写出对应点的坐标.
【详解】
(1)如图,线段A′B′为所作;
(2)如图,线段A″B″为所作;
(3)P 点坐标为(−4,1)、(4,1)、(0,−5).
此题考查作图-轴对称变换,平行四边形的性质,作图-旋转变换,解题关键在于掌握作图法则.
26、(1)证明见解析(2)
【解析】
分析:(1)先根据平行四边形的性质,得出OD=OB,再根据OE=OB,得出OE=OB=OD,最后根据三角形内角和定理,求得∠OEB+∠OED=90°,即可得出结论.
(2)证明△OFD为直角三角形,得出∠OFD=90°.在Rt△CED中,由勾股定理求出CD=1.由三角形面积求出EF=.在Rt△CEF中,根据勾股定理求出CF即可.
详解:(1)证明:∵平行四边形ABCD,∴OB=OD.∵OB=OE,∴OE=OD.
∴∠OED=∠ODE.∵OB=OE,∴∠OBE=∠OEB.
∵∠OBE+∠OEB+∠ODE+∠OED=180°,∴∠OEB+∠OED=90°.∴DE⊥BE;
(2)解:∵OE=OD,OF2+FD2=OE2,∴OF2+FD2=OD2.∴△OFD为直角三角形,且∠OFD=90°.
在Rt△CED中,∠CED=90°,CE=3,DE=4,∴CD2=CE2+DE2.
∴CD=1.又∵,∴.
在Rt△CEF中,∠CFE=90°,CE=3,,根据勾股定理得:.
点睛:本题考查了平行四边形的性质、三角形的内角和定理及勾股定理等知识,解题的关键是求出∠OEB+∠OED=90°,进而利用勾股定理求解.
题号
一
二
三
四
五
总分
得分
年龄(岁)
13
14
15
16
人数(人)
5
15
x
10-x
候选人
甲
乙
测试成绩(百分制)
面试成绩
86
92
笔试成绩
90
83
相关试卷
这是一份秦皇岛市重点中学2024年数学九年级第一学期开学调研模拟试题【含答案】,共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份辽宁省沈阳市126中学2025届九年级数学第一学期开学调研模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2025届烟台市重点中学数学九年级第一学期开学调研模拟试题【含答案】,共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。