搜索
    上传资料 赚现金
    英语朗读宝

    陕西省宝鸡市重点2024年数学九上开学达标检测试题【含答案】

    陕西省宝鸡市重点2024年数学九上开学达标检测试题【含答案】第1页
    陕西省宝鸡市重点2024年数学九上开学达标检测试题【含答案】第2页
    陕西省宝鸡市重点2024年数学九上开学达标检测试题【含答案】第3页
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    陕西省宝鸡市重点2024年数学九上开学达标检测试题【含答案】

    展开

    这是一份陕西省宝鸡市重点2024年数学九上开学达标检测试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)下列属于最简二次根式的是( )
    A.B.C.D.
    2、(4分)下列各式中,属于分式的是( )
    A.B.C.D.
    3、(4分)下列因式分解正确的是( )
    A.B.
    C.D.
    4、(4分)矩形ABCD中,AD=AB,AF平分∠BAD,DF⊥AF于点F,BF交CD于点H.若AB=6,则CH=( )
    A.B.C.D.
    5、(4分)分式有意义的条件是( )
    A.B.C.且D.或
    6、(4分)如图,在△ABC中,点D,E分别是边AB,AC的中点,已知DE=3,则BC的长为( )
    A.3B.4C.6D.5
    7、(4分)直线y=﹣2x+5与x轴、y轴的交点坐标分别是( )
    A.(,0),(0,5)B.(﹣,0),(0,5)C.(,0),(0,﹣5)D.(﹣,0),(0,﹣5)
    8、(4分)如图,为的平分线,于,,,则点到射线的距离为( )
    A.2B.3C.4D.5
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)在同一平面直角坐标系中,直线与直线的交点不可能在第_______象限 .
    10、(4分)已知反比例函数在第一象限的图象如图所示,点A在其图象上,点B为轴正半轴上一点,连接AO、AB,且AO=AB,则S△AOB= .
    11、(4分)将一次函数y=2x的图象向上平移1个单位,所得图象对应的函数表达式为__________.
    12、(4分)当时,二次根式的值是___________.
    13、(4分)如图,在平面直角坐标系中,矩形的边在轴上,边在轴上,点的坐标为.将矩形沿对角线翻折,点落在点的位置,且交轴于点,那么点的坐标为______.
    三、解答题(本大题共5个小题,共48分)
    14、(12分)已知x=2+,求代数式(7-4)x2+(2-)x+的值.
    15、(8分)如图,以四边形ABCD的边AB、AD为边分别向外侧作等边三角形ABF和ADE,连接BE、DF.
    (1)当四边形ABCD为正方形时(如图1),则线段BE与DF的数量关系是 .
    (2)当四边形ABCD为平行四边形时(如图2),问(1)中的结论是否还成立?若成立,请证明;若不成立,请说明理由.
    16、(8分)如图,在中,,,D是AC的中点,过点A作直线,过点D的直线EF交BC的延长线于点E,交直线l于点F,连接AE、CF.
    (1)求证:①≌;②;
    (2)若,试判断四边形AFCE是什么特殊四边形,并证明你的结论;
    (3)若,探索:是否存在这样的能使四边形AFCE成为正方形?若能,求出满足条件时的的度数;若不能,请说明理由.
    17、(10分)已知a,b满足|a﹣|++(c﹣4)2=1.
    (1)求a,b,c的值;
    (2)判断以a,b,c为边能否构成三角形?若能构成三角形,此三角形是什么形状?并求出三角形的面积;若不能,请说明理由.
    18、(10分)已知四边形ABCD的对角线AC与BD交于点O,给出下列四个论断:
    ①OA=OC,②AB=CD,③∠BAD=∠DCB,④AD∥BC.
    请你从中选择两个论断作为条件,以“四边形ABCD为平行四边形”作为结论,完成下列各题:
    (1)构造一个真命题,画图并给出证明;
    (2)构造一个假命题,举反例加以说明.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)已知一次函数y=ax+b的图象经过点(﹣2,0)和点(0,﹣1),则不等式ax+b>0的解集是_____.
    20、(4分)在平行四边形ABCD中,已知∠A﹣∠B=60°,则∠C=_____.
    21、(4分)如图,平行四边形的周长为,对角线交于点,点是边的中点,已知,则______.
    22、(4分)已知关于 的方程,如果设,那么原方程化为关于的方程是____.
    23、(4分)如图,过x轴上任意一点P作y轴的平行线,分别与反比例函数y=(x>0),y=﹣(x>0)的图象交于A点和B点,若C为y轴任意一点.连接AB、BC,则△ABC的面积为_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)利用我们学过的知识,可以导出下面这个等式:

    该等式从左到右的变形,不仅保持了结构的对称性,还体现了数学的和谐、简洁美.
    (1)请你展开右边检验这个等式的正确性;
    (2)利用上面的式子计算:

    25、(10分)在平面直角坐标系xOy中,边长为6的正方形OABC的顶点A,C分别在x轴和y轴的正半轴上,直线y=mx+2与OC,BC两边分别相交于点D,G,以DG为边作菱形DEFG,顶点E在OA边上.
    (1)如图1,当菱形DEFG的一顶点F在AB边上.
    ①若CG=OD时,求直线DG的函数表达式;
    ②求证:OED≌BGF.
    (2)如图2,当菱形DEFG的一顶点F在AB边右侧,连接BF,设CG=a,FBG面积为S.求S与a的函数关系式;并判断S的值能否等于1?请说明理由;
    (3)如图3,连接GE,当GD平分∠CGE时,m的值为 .(直接写出答案).
    26、(12分)一次函数y =kx+b()的图象经过点,,求一次函数的表达式.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、B
    【解析】
    直接利用最简二次根式的定义分析得出答案.
    【详解】
    解:A、=3,故此选项错误;
    B、是最简二次根式,故此选项正确;
    C、,故此选项错误;
    D、,故此选项错误;
    故选:B.
    此题主要考查了最简二次根式,正确把握最简二次根式的定义是解题关键.
    2、C
    【解析】
    根据分式的定义,可得出答案.
    【详解】
    A、分母中不含未知数故不是分式,故错误;
    B、是分数形式,但分母不含未知数不是分式,故错误;
    C、是分式,故正确;
    D、分母中不含未知数不是分式,故错误.
    故选C
    本题考查了分式的定义,熟练掌握分式的概念是正确求解的关键.
    3、C
    【解析】
    根据因式分解的定义及方法逐项分析即可.
    【详解】
    A. ,故不正确;
    B. 在实数范围内不能因式分解,故不正确;
    C. ,正确;
    D. 的右边不是积的形式,故不正确;
    故选C.
    本题考查了因式分解,把一个多项式化成几个整式的乘积的形式,叫做因式分解.因式分解常用的方法有:①提公因式法;②公式法;③十字相乘法;④分组分解法. 因式分解必须分解到每个因式都不能再分解为止.
    4、D
    【解析】
    过作,交于,交于,则,证是等腰直角三角形,得出,证,为的中位线,进而得出答案.
    【详解】
    解:如图,过作,交于,交于,则,
    四边形是矩形,
    ,,,
    ,,
    平分,




    是等腰直角三角形,

    点是的中点,
    ,为的中位线,
    ,,

    故选:.
    本题考查了矩形的性质,等腰三角形的判定与性质,等腰直角三角形的判定与性质,三角形中位线定理等知识;熟练掌握矩形的性质和等腰直角三角形的判定与性质是解本题的关键.
    5、B
    【解析】
    根据分式有意义的条件即可求出答案.
    【详解】
    解:由题意可知:x-2≠0,
    ∴x≠2
    故选:B.
    本题考查分式有意义的条件,解题的关键是熟练运用分式有意义的条件,本题属于基础题型.
    6、C
    【解析】
    根据三角形的中位线定理“三角形的中位线等于第三边的一半”,有,从而求出.
    【详解】
    解:∵D、E分别是AB、AC的中点.
    ∴DE是△ABC的中位线,
    ∴BC=2DE,
    ∵DE=3,
    ∴BC=2×3=1.
    故选:C.
    本题考查了三角形的中位线定理,中位线是三角形中的一条重要线段,由于它的性质与线段的中点及平行线紧密相连,因此,它在几何图形的计算及证明中有着广泛的应用.
    7、A
    【解析】
    分别根据点在坐标轴上坐标的特点求出对应的、的值,即可求出直线与轴、轴的交点坐标.
    【详解】
    令,则,
    解得,
    故此直线与轴的交点的坐标为;
    令,则,
    故此直线与轴的交点的坐标为.
    故选:.
    本题考查的是坐标轴上点的坐标特点,一次函数(,、是常数)的图象是一条直线,它与轴的交点坐标是;与轴的交点坐标是.
    8、B
    【解析】
    过C作CF⊥AO,根据勾股定理可得CM的长,再根据角的平分线上的点到角的两边的距离相等,可得CF=CM,进而可得答案.
    【详解】
    解:如图,过C作CF⊥AO于F

    ∵OC为∠AOB的平分线,CM⊥OB,
    ∴CM=CF,
    ∵OC=5,OM=4,
    ∴CM=3,
    ∴CF=3,
    故选:B.
    此题主要考查了角平分线的性质,关键是掌握角的平分线上的点到角的两边的距离相等.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、四
    【解析】
    根据一次函数的性质确定两条直线所经过的象限可得结果.
    【详解】
    解:直线y=2x+3过一、二、三象限;
    当m>0时,直线y=-x+m过一、二、四象限,
    两直线交点可能在一或二象限;
    当m<0时,直线y=-x+m过二、三、四象限,
    两直线交点可能在二或三象限;
    综上所述,直线y=2x+3与直线y=-x+m的交点不可能在第四象限,
    故答案为四.
    本题主要考查了两直线相交问题,熟记一次函数图象与系数的关系是解答此题的关键.
    10、6.
    【解析】
    根据等腰三角形的性质得出CO=BC,再利用反比例函数系数k的几何意义得出S△AOB即可.
    【详解】
    过点A作AC⊥OB于点C,
    ∵AO=AB,
    ∴CO=BC,
    ∵点A在其图象上,
    ∴AC×CO=3,
    ∴AC×BC=3,
    ∴S△AOB=6.
    故答案为6.
    11、y=2x+1.
    【解析】
    由“上加下减”的原则可知,将函数y=2x的图象向上平移1个单位所得函数的解析式为y=2x+1,
    故答案为y=2x+1.
    12、2
    【解析】
    当时,===2,故答案为:2.
    13、(0,).
    【解析】
    先证明EA=EC(设为x);根据勾股定理列出x2=12+(3-x)2,求得x=,即可解决问题.
    【详解】
    由题意知:∠BAC=∠DAC,AB∥OC,
    ∴∠ECA=∠BAC,
    ∴∠ECA=∠DAC,
    ∴EA=EC(设为x);
    由题意得:OA=1,OC=AB=3;
    由勾股定理得:x2=12+(3-x)2,
    解得:x=,
    ∴OE=3-=,
    ∴E点的坐标为(0,).
    故答案为:(0,).
    该题主要考查了翻折变换的性质及其应用问题;解题的关键是灵活运用有关定理来分析、判断、推理或解答;对综合的分析问题解决问题的能力提出了较高的要求.
    三、解答题(本大题共5个小题,共48分)
    14、2+
    【解析】
    把已知数据代入原式,根据平方差公式计算即可.
    【详解】
    解:当时,
    原式=
    =
    =49-48+4-3+
    =2+.
    15、(1)BE=DF(或相等);(2)成立.证明见解析.
    【解析】
    (1)根据正方形的性质和等边三角形性质得:AB=AD,∠BAD=90°,AF=AB,AE=AD,∠BAF=∠DAE=60°,再根据全等三角形判定和性质即可.
    (2)先利用平行四边形性质和等边三角形性质,再运用全等三角形判定和性质即可.
    【详解】
    解:(1)BE=DF(或相等)如图1,
    ∵四边形ABCD为正方形
    ∴AB=AD,∠BAD=90°
    ∵△ABF、△ADE都是等边三角形
    ∴AF=AB,AE=AD,∠BAF=∠DAE=60°
    ∴∠BAE=∠BAD+∠DAE=150°,∠DAF=∠BAD+∠BAF=150°
    ∴∠BAE=∠DAF
    ∵AB=AF=AE=AD
    ∴△ABE≌△AFD(SAS)
    ∴BE=DF
    故答案为BE=DF或相等;
    (2)成立.
    证明:如图2,
    ∵△AFB为等边三角形
    ∴AF=AB,∠FAB=60°
    ∵△ADE为等边三角形,
    ∴AD=AE,∠EAD=60°
    ∴∠FAB+∠BAD=∠EAD+∠BAD,
    即∠FAD=∠BAE.
    在△AFD和△ABE中,

    ∴△AFD≌△ABE(SAS),
    ∴BE=DF.
    本题考查了正方形、平行四边形、等边三角形、全等三角形的判定与性质;解题时要熟练掌握和运用所学性质定理和判定定理.
    16、(1)①证明见解析;②证明见解析;(2)四边形AFCE是矩形,证明见解析;(3)当EF⊥AC,∠B=22.5°时,四边形AFCE是正方形,证明见解析.
    【解析】
    (1)①根据中点和平行即可找出条件证明全等.
    ②由全等的性质可以证明出四边形AFCE是平行四边形,即可得到AE=FC.
    (2)根据和可证明出△DCE为等边三角形,进而得到AC=EF即可证明出四边形AFCE是矩形.
    (3)根据四边形AFCE是平行四边形,且EF⊥AC,得到四边形AFCE是菱形.由AC=BC,证出△DCE是等腰直角三角形即可得到AC=EF,进而证明出菱形AFCE是正方形.所以存在这样的.
    【详解】
    (1)①
    ∵AF∥BE,∴∠FAD=∠ECD,∠AFD=∠CED.
    ∵AD=CD,∴△ADF≌△CDE.
    ②由△ADF≌△CDE,∴AF=CE.
    ∵AF∥BE,∴四边形AFCE是平行四边形,∴AE=FC.
    (2)四边形AFCE是矩形.
    ∵四边形AFCE是平行四边形,∴AD=DC,ED=DF.
    ∵AC=BC,∴∠BAC=∠B=30°,∴∠ACE=60°.
    ∵∠CDE=2∠B=60°,∴△DCE为等边三角形,∴CD=ED,∴AC=EF,∴四边形AFCE是矩形.
    (3)当EF⊥AC,∠B=22.5°时,四边形AFCE是正方形.
    ∵四边形AFCE是平行四边形,且EF⊥AC,∴四边形AFCE是菱形.
    ∵AC=BC,∴∠BAC=∠B=22.5°,∴∠DCE=2∠B=45°,∴△DCE是等腰直角三角形,即DC=DE,∴AC=EF,∴菱形AFCE是正方形.
    即当EF⊥AC,∠B=22.5°时,四边形AFCE是正方形.
    此题考查三角形全等,特殊平行四边形的判定及性质,难度中等.
    17、(1)a=,b=5,c=4;(2)
    【解析】
    (1)根据非负数的性质得到方程,解方程即可得到结果;
    (2)根据三角形的三边关系,勾股定理的逆定理判断即可.
    【详解】
    (1)∵a,b,c满足|a-|++(c-4)2=1,
    ∴|a-|=1,=1,(c-4)2=1,
    解得a=,b=5,c=4.
    (2)∵a=,b=5,c=4,
    ∴a+b=+5>4.
    ∴以a,b,c为边能构成三角形.
    ∵a2+b2=()2+52=32=(4)2=c2,
    ∴此三角形是直角三角形.
    本题考查了勾股定理的逆定理,非负数的性质,熟练掌握勾股定理的逆定理是解题的关键.
    18、(1)见解析;(2)见解析.
    【解析】
    【分析】如果①②结合,那么这些线段所在的两个三角形是SSA,不一定全等,那么就不能得到相等的对边平行;如果②③结合,和①②结合的情况相同;如果①④结合,由对边平行可得到两对内错角相等,那么AD,BC所在的三角形全等,也得到平行的对边也相等,那么是平行四边形;最易举出反例的是②④,它有可能是等腰梯形.
    【详解】(1)①④为条件时:
    ∵AD∥BC,
    ∴∠DAC=∠BCA,∠ADB=∠DBC,
    又∵OA=OC,
    ∴△AOD≌△COB,
    ∴AD=BC,
    ∴四边形ABCD为平行四边形;
    (2)②④为条件时,此时一组对边平行,另一组对边相等,可以构成等腰梯形.
    【点睛】本题考查了平行四边形的判定,真命题与假命题,熟知举出符合条件不符合结论的例子来说明一个命题是假命题是关键;本题中用等腰梯形做反例来推翻不是平行四边形的论断.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、x<﹣2
    【解析】
    根据点A和点B的坐标得到一次函数图象经过第二、三、四象限,根据函数图象得到当x>-2时,图象在x轴上方,即y>1.
    【详解】
    解:∵一次函数y=ax+b的图象经过(-2,1)和点(1,-1),
    ∴一次函数图象经过第二、三、四象限,
    ∴当x<-2时,y>1,即ax+b>1,
    ∴关于x的不等式ax+b<1的解集为x<-2.故答案为:x<-2.
    本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)1的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
    20、
    【解析】
    根据平行四边形的性质可得到答案.
    【详解】
    ∵四边形ABCD是平行四边形,∴∠A+∠B=180°,又∠A-∠B=60°,故可知∠A=120°,∴∠C=∠A=120°,故答案为120°.
    本题主要考查了平行四边形的基本性质,解本题的要点在于熟记平行四边形的对角相等.
    21、1
    【解析】
    根据平行四边形的性质求出AD的长,再根据中位线的性质即可求出OE的长.
    【详解】
    解:∵,
    ∵,
    ∴.
    ∵为的中点,
    ∴为的中位线,
    ∴.
    故答案为:1.
    此题主要考查平行四边形与中位线的性质,解题的关键是熟知平行四边形的对边相等.
    22、.
    【解析】
    先根据得到,再代入原方程进行换元即可.
    【详解】
    由,可得
    ∴原方程化为3y+
    故答案为:3y+.
    本题主要考查了换元法解分式方程,换元的实质是转化,将复杂问题简单化.常用的是整体换元法,是在已知或者未知中,某个代数式几次出现,用一个字母来代替它可以简化问题,有时候要通过变形才能换元.
    23、
    【解析】
    【分析】设出点P坐标,分别表示点AB坐标,由题意△ABC面积与△ABO的面积相等,因此只要求出△ABO的面积即可得答案..
    【详解】设点P坐标为(a,0)
    则点A坐标为(a,),B点坐标为(a,﹣)
    ∴S△ABC=S△ABO =S△APO+S△OPB==,
    故答案为.
    【点睛】本题考查了反比例函数中比例系数k的几何意义,熟练掌握相关知识是解题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、(1)见解析;(2)1.
    【解析】
    (1)根据完全平方公式和合并同类项的方法可以将等式右边的式子进行化简,从而可以得出结论;
    (2)根据题目中的等式可以求得所求式子的值.
    【详解】
    解:(1)[(a-b)2+(b-c)2+(c-a)2]
    =(a2-2ab+b2+b2-2bc+c2+a2-2ac+c2)
    =×(2a2+2b2+2c2-2ab-2bc-2ac)
    =a2+b2+c2-ab-bc-ac,
    故a2+b2+c2-ab-bc-ac=[(a-b)2+(b-c)2+(c-a)2]正确;
    (2)20182+20192+20202-2018××2020-2018×2020
    =×[()2+(2019-2020)2+(2020-2018)2]
    =×(1+1+4)
    =×6
    =1.
    本题考查因式分解的应用,解答本题的关键是明确题意,熟练掌握完全平方公式并能灵活运用.
    25、(6)①y=2x+2;②见解析;(2)S≠6,见解析;(6)
    【解析】
    (6)①将x=0代入y=mx+2得y=2,故此点D的坐标为(0,2),由CG=OD=2可知点G的坐标为(2,6),将点G(2,6)代入y=mx+2可求得m=2;
    ②延长GF交y轴于点M,根据AAS可证明△OED≌△BGF;
    (2)如图2所示:过点F作FH⊥BC,垂足为H,延长FG交y轴与点N.先证明Rt△GHF≌Rt△EOD(AAS),从而得到FH=DO=2,由三角形的面积公式可知:S=6﹣a.②当s=6时,a=5,在△CGD中由勾股定理可求得DG=,由菱形的性质可知;DG=DE=,在Rt△DOE中由勾股定理可求得OE=>6,故S≠6;
    (6)如图6所示:连接DF交EG于点M,过点M作MN⊥y轴,垂足为N.由菱形的性质可知:DM⊥GM,点M为DF的中点,根据角平分线的性质可知:MD=CD=5,由中点坐标公式可知点M的纵坐标为6,得到ND=6,根据勾股定理可求得MN=,则得到点M的坐标为(,6)然后利用待定系数法求得DM、GM的解析式,从而可得到点G的坐标,最后将点G的坐标代入y=mx+2可求得m的值.
    【详解】
    解:(6)①∵将x=0代入y=mx+2得;y=2,
    ∴点D的坐标为(0,2).
    ∵CG=OD=2,
    ∴点G的坐标为(2,6).
    将点G(2,6)代入y=mx+2得:2m+2=6.
    解得:m=2.
    ∴直线DG的函数表达式为y=2x+2.
    ②如图6,延长GF交y轴于点M,
    ∵DM∥AB,
    ∴∠GFB=∠DMG,
    ∵四边形DEFG是菱形,
    ∴GF∥DE,DE=GF,
    ∴∠DMG=∠ODE,
    ∴∠GFB=∠ODE,
    又∵∠B=∠DOE=90°,
    ∴△OED≌△BGF(AAS);
    (2)如图2所示:过点F作FH⊥BC,垂足为H,延长FG交y轴与点N.
    ∵四边形DEFG为菱形,
    ∴GF=DE,GF∥DE.
    ∴∠GNC=∠EDO.
    ∴∠NGC=∠DEO.
    ∴∠HGF=∠DEO.
    在Rt△GHF和Rt△EOD中,

    ∴Rt△GHF≌Rt△EOD(AAS).
    ∴FH=DO=2.
    ∴S△GBF=GB•HF=×2×(6﹣a)=6﹣a.
    ∴S与a之间的函数关系式为:S=6﹣a.
    当s=6时,则6﹣a=6.
    解得:a=5.
    ∴点G的坐标为(5,6).
    在△DCG中,由勾股定理可知;DG==.
    ∵四边形GDEF是菱形,
    ∴DE=DG=.
    在Rt△DOE中,由勾股定理可知OE=>6.
    ∴OE>OA.
    ∴点E不在OA上.
    ∴S≠6.
    (6)如图6所示:连接DF交EG于点M,过点M作MN⊥y轴,垂足为N.
    又∵四边形DEFG为菱形,
    ∴DM⊥GM,点M为DF的中点.
    ∵GD平分∠CGE,DM⊥GM,GC⊥OC,
    ∴MD=CD=5.
    ∵由(2)可知点F的坐标为5,点D的纵坐标为2,
    ∴点M的纵坐标为6.
    ∴ND=6.
    在Rt△DNM中,MN==.
    ∴点M的坐标为(,6).
    设直线DM的解析式为y=kx+2.将(,6)代入得:k+2=6.
    解得:k=.
    ∴设直线MG的解析式为y=﹣x+b.将(,6)代入得:﹣65+b=6.
    解得:b=68.
    ∴直线MG的解析式为y=﹣x+68.
    将y=6代入得:﹣x+68=6.
    解得:x=.
    ∴点G的坐标为(,6).
    将(,6)代入y=mx+2得:m+2=6.
    解得:m=.
    故答案为:.
    本题是一次函数综合题,考查了菱形的性质,全等三角形的性质和判定,勾股定理,待定系数法求一次函数的解析式,一次函数图象上点的坐标特征,角平分线的性质,熟练掌握全等三角形的判定与性质是解题的关键.
    26、
    【解析】
    用待定系数法求一次函数的解析式即可.
    【详解】
    解:依题意得

    解得
    ∴一次函数的表达式为.
    故答案为.
    本题考查用待定系数法求一次函数的解析式,掌握方程组的解法是解题的关键.
    题号





    总分
    得分

    相关试卷

    陕西省宝鸡市北崖中学2024年九上数学开学达标检测模拟试题【含答案】:

    这是一份陕西省宝鸡市北崖中学2024年九上数学开学达标检测模拟试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    宁德市重点中学2024年九上数学开学达标检测试题【含答案】:

    这是一份宁德市重点中学2024年九上数学开学达标检测试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届陕西省宝鸡市数学九上开学调研试题【含答案】:

    这是一份2025届陕西省宝鸡市数学九上开学调研试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map